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Abstract: Vehicles traversing off-road terrains experience modes of dynamics that are not
usually encountered on-road. Deformable terrains with significant variations in height and the
presence of bumps can lead to significant vertical dynamics in a vehicle. Besides rider discomfort
and safety of the vehicle, in the case of unmanned vehicles, these vertical dynamics coupled with
pitch motion can produce significant disturbances to sensors such as cameras. Reducing these
vertical dynamics is therefore important. However any control design for this problem has to first
contend with the modeling complexity of vehicle-tire-terrain interaction. Motivated by recent
developments in dynamical systems, we propose the use of the Koopman operator to obtain a
linear representation for both the vehicle and terrain interaction dynamics as well as the effect
of the control input. As a test case for this framework we address the problem of stabilizing the
vertical dynamics of a half-car model moving on a deformable terrain using a propulsive force
on the car as the sole control input. The terramechanics are modeled using the Bekker-Wong
equations. Using the Koopman operator framework, we obtain a lifted, linear representation
of the nonlinear control system, which is then used to formulate the optimal control problem
as a constrained linear quadratic model predictive control problem on the lifted system. The
framework proposed in this paper can potentially be extended to design a combination of data-
driven and physics-based control algorithms for intelligent suspensions, motion control and path-
tracking for unmanned ground vehicles on unstructured terrains.

Keywords: Vehicle dynamic systems, Motion control, Model Predictive Control, Koopman
operator.

1. INTRODUCTION

In many military applications, unmanned ground vehi-
cles (UGVs) must navigate smoothly and efficiently over
uneven, deformable terrain. The vertical dynamics of a
vehicle can be significant while traversing such terrain.
The vertical and pitching modes of motion can couple in
an unsafe manner endangering the vehicle. Besides safety
concerns, the vertical dynamics of the vehicle manifest as
disturbances for onboard sensors like cameras, lidar and
IMUs and can lead to deteriorated autonomous perfor-
mance. The usual approach to minimizing the vertical
oscillations of a vehicle in the case of on road driving over
small bumps is to control the parameters of the vehicle sus-
pension system Elbanhawi et al. (2015); Fialho and Balas
(2000); Fu and Dong (2021); Yu et al. (2021). The off-road
environment however presents several serious challenges:
the terrain is not rigid, it is usually more uneven, terrain
conditions can change more due to precipitation, and most
importantly there do not exist well defined lanes or roads.
Besides the control of the suspension parameters, control

⋆ This work was supported by the Automotive Research Center
(ARC), a US Army Center of Excellence for modeling and simulation
of ground vehicles, under Cooperative Agreement W56HZV-19-2-
0001 with the US Army DEVCOM Ground Vehicle Systems Center
(GVSC).
⋆⋆DISTRIBUTION A. Approved for public release; distribution
unlimited. OPSEC #6307

of the speed of the vehicle itself can become an important
means to reduce the vertical dynamics of a vehicle. This
is unlike the case of on-road driving where the speed of a
vehicle is determined to a great extent by traffic conditions
and legal speed limits.

Controlling the speed of an off-road UGV with the goal
of minimizing vertical oscillations requires at least low de-
gree of freedom vehicle models that incorporate important
physics of terrain-tire interaction. Even simplified models
like the half-car or the bicycle when coupled with a model
of a deformable terrain lead to governing equations that
are nonlinear differential equations with many terrain pa-
rameters and forces that have to calculated by surface inte-
grals along the tires, as discussed for instance in Ishigami
et al. (2007); Taheri et al. (2015); Dallas et al. (2021).
While previous works have addressed some problems on
path tracking on deformable terrain, the vehicle models
usually ignore the vertical dynamics. This essentially is
equivalent to assuming that the normal reaction trans-
mitted by the wheels to the ground is just the weight
of the vehicle, a constant, thus simplifying the governing
equations. This assumption is no longer valid when the
vertical dynamics of a vehicle due to the suspension are
present or when the curvature of the terrain to be traversed
is high. To overcome the challenges of the complex physics,
a more suitable representation of the governing model



that is also simultaneously amenable to standard control
systems tools is desirable.

Recent progress on data driven methods to model dynam-
ical systems using the Koopman operator can be valuable
for this purpose. Essentially the Koopman operator acts
linearly on a ‘lifted’ space of functions that is associ-
ated with the observables of the dynamical system, see
for instance Lasota and Mackey (1994); Budǐsić et al.
(2012) for a review. Projecting the space of observables
to a finite but high dimensional space leads to a linear
but high dimensional dynamical system. This approach
has proven fruitful to obtain reduced order linear models
and identification of main modes of in fluid flows, see for
example Rowley et al. (2009); Schmid (2010); Li et al.
(2017). More recent progress has been made on extending
the Koopman operator method to a control system, see
for example Korda and Mezić (2018); Kaiser et al. (2017,
2020); Otto and Rowley (2021). In particular Korda and
Mezić (2018) proposes an approach to formulate a high
dimensional linear control system that is amenable to
model predictive control (MPC). This enables the formu-
lation high dimensional constrained linear optimal control
problems. This approach is well-suited for the problem of
controlling the dynamics of off-road vehicles as it generates
a convenient linear representation for both the complex
governing dynamics as well as the control input.

The application of the Koopman operator method to
problems in vehicle dynamics is novel and the results in
this paper suggest that more complex control problems,
including control of suspension parameters, path tracking
problems with higher degree of freedom vehicle models can
be addressed in a systematic computational framework.

2. SYSTEM MODELLING

The vehicle system considered in this work is modelled
by a half-car model to represent the vehicle’s vertical
dynamics with the Bekker-Wong terramechanics model
(see Wong and Reece (1967); Ishigami et al. (2007) for
more details) used to describe friction forces arising from
the wheel-terrain interaction. The governing equations of
these models are given in the following subsections.

2.1 Half-car vehicle model

The vertical and pitching dynamics of the vehicle are
described by a half-car model, a single-track vehicle model
which approximates the suspension dynamics by a linear
spring and damper at both the front and rear axle. A
schematic of this model is shown in Fig. 1. The governing
equations for the half-car model are

mz̈ = − kr(zr − zrg)− cr(żr − żrg) (1)

− kf (zf − zfg)− cf (żf − żfg)

Iy θ̈ =
(
kr(zr − zrg)lr + cr(żr − żrg)lr (2)

− kf (zf − zfg)lf − cf (żf − żfg)lf
)
cos θ

where kf , kr, cf , cr are the stiffness and damping values at
the front and rear suspensions, respectively; and lf , lr are
the distances from the front and rear axle to the vehicle’s
center of mass. The variables zf and zr are the vertical
displacements of the vehicle chassis from equilibrium at
the front and rear axle, given by

kr cr kf cf

zfgzrg
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Fig. 1. Schematic of half-car vehicle model

zf = z + lf sin θ , zr = z − lr sin θ. (3)

Similarly, the variables zfg and zrg represent the vertical
displacement in the suspension due to the terrain at
the front and rear wheels. These are directly related to
the wheel sinkage, h, and the terrain profile, which is
represented as a function of the longitudinal distance,
H(x). So, we have

zg = H(x)− h , (4)

which is evaluated at both the front and rear wheels. The
computation of the wheel sinkage is discussed further in
Sec. 2.2.

In order to compute the wheel forces from the terrain
model, normal load N at each wheel must be computed.
From the half-car model, this is computed as

Ni =
1

2
mg − k(zi − zgi)− c(żi − żgi) +mwḦ (5)

where i ∈ {r, f}, mw is the mass of the wheel, and

Ḧ =
d2H

dx2
ẋ2 +

dH

dx
ẍ

is the vertical acceleration of the wheel.

The longitudinal motion of the vehicle is described by a
sum of forces in the x direction to give

mẍ = Fxf + Fxr + Fu (6)

where Fxf and Fxr are wheel forces derived from the
Bekker-Wong terramechanics model and Fu is an addi-
tional tractive/braking force, considered as a control input.

2.2 Terramechanics Model

In order to compute the forces Fxf and Fxr at the wheel
resulting from the terrain interactions, a Bekker-based ter-
ramechanics model is implemented. With such, the forces
are computed by integrating the normal and shear stress
distributions over the contact region between the wheel
and terrain. The normal and shear stress distributions σ
and τx are taken to be functions of the sinkage h, which,
in turn, is assumed to be a function of the contact angle
ϑ. These are given by

σ(ϑ) =

(
kc
b

+ kϕ

)
h(ϑ)n (7)

τx(ϑ) = (c+ σ(ϑ) tanϕ)
(
1− e−jx/kx

)
(8)
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Fig. 2. Schematic of wheel-terrain interaction model

where kc, kϕ, and n are terrain parameters, b is the effective
width of the wheel, and the sinkage h is given as follows.

h(ϑ) =

{
r (cosϑ− cosϑf ) ϑm ≤ ϑ ≤ ϑf
r (cosϑe − cosϑf ) ϑr ≤ ϑ ≤ ϑm

Here ϑf and ϑr are the front and rear contact angles as
depicted in Fig. 2, and ϑm is the angle of maximum normal
stress. These can be computed as

ϑf = cos−1

(
1− hf

r

)
(9)

ϑm = (a0 + a1s)ϑf (10)

ϑr = (b0 + b1s)ϑf (11)

ϑe = ϑf −
(
ϑ− ϑr
ϑm − ϑr

)
(ϑf − ϑm) (12)

where a0, a1, b0, b1 are soil-dependent parameters. For
the shear stress τx(ϑ), the shear displacement jx(ϑ) is also
needed. This is given by

jx(ϑ) = r
[
(ϑf − ϑ)− (1− s)(sinϑf − sinϑ)

]
(13)

where s = (rω − vl)/rω is the slip ratio. Since wheel
rotation ω is not tracked as a state in our simulations,
the slip ratio s is assumed to maintain a constant value.

With this, σ(ϑ) and τx(ϑ) are fully defined with the
exception of the maximum sinkage h. These distributions
can then be integrated to yield the longitudinal and normal
forces on the wheel as

Fx =

∫ ϑf

ϑr

rb (τx(ϑ) cosϑ− σ(ϑ) sinϑ) dϑ (14)

Fz =

∫ ϑf

ϑr

rb (τx(ϑ) sinϑ+ σ(ϑ) cosϑ) dϑ (15)

Finally, the maximum sinkage hf can be found by applying
the boundary condition that the resultant force in the ver-
tical direction is equal to the normal reaction. In this work,
hf is found using Eq. 15 as the zero of the expression Fz−
N = 0 through a Newton-Raphson iterative procedure.
Once hf is found, the stress distributions are fully defined
and Eqs. 14 can be used to compute the longitudinal force
on the wheel.

3. KOOPMAN LIFTING

Koopman-based methods for MPC have received signifi-
cant attention in recent years (see, for example Korda and
Mezić (2018); Peitz et al. (2020); Folkestad and Burdick

(2021)), as MPC methods can solve the optimal control
problem efficiently online, while satisfying constraints on
the states and controls. In this paper, we take the ap-
proach of Korda and Mezić (2018), which modifies the
extended dynamic mode decomposition (EDMD) algo-
rithm Williams et al. (2015) to account for the effects
of actuation on the system dynamics. More recent works
Peitz et al. (2020); Folkestad and Burdick (2021) have
shown that a similar data-driven approach can be used
to obtain a continuous time, bilinear representation of the
system based on the Koopman generator, which can then
be implemented for control in a receding horizon manner.
While this method appears to be more data efficient Peitz
et al. (2020), the resulting system is bilinear and thus
the optimal control problem must be solved either by
using nonlinear optimization methods Peitz et al. (2020);
Folkestad and Burdick (2021) or by quantizing the control
input and reducing the problem to selecting a control from
a pre-defined set on each step, as suggested by Peitz et al.
(2020); Klus et al. (2020). In addition, these methods also
require that data on the derivatives of the states either
be measured or computed by finite differencing, while the
discrete-time approach only requires information about
the states. For these reasons, we opt for the alternative
approach of Korda and Mezić (2018), which gives a linear
representation of the system and thus a convex formulation
of the optimal control problem.

The following subsections briefly outline the approach,
beginning with a description of the EDMD method for
uncontrolled systems in Sec. 3.1 and the extension to
actuated systems in Sec. 3.2.

3.1 Koopman operator for uncontrolled systems

The Koopman operator (Lasota and Mackey (1994) or
Budǐsić et al. (2012)) is an infinite dimensional linear
operator which propagates observable functions of the
states forward in time under the dynamics of the system.
That is, for the dynamical system

xt+1 = F (xt) (16)

where xt ∈ X ⊂ Rn and F : X 7→ X the action of the
Koopman operator K : L∞(X) 7→ L∞(X) on an observable
function g : X 7→ R is given as follows.

Kg(xt) = (g ◦ F )(xt) = g(xt+1) (17)

To approximate the infinite dimensional operator K, we
take the EDMD approach as proposed in Williams et al.
(2015), by projecting the observable function g onto the
space spanned by a set, D, of dictionary functions.

D = {ψ1, ψ2, . . . , ψk} (18)

That is, we make the approximation

Kg(xt) ≈ K(c⊺Ψ)(xt) ≈ c⊺K⊺Ψ(xt) (19)

where Ψ : X 7→ Rk is a column-vector valued function
where the elements are given by [Ψ(x)]i = ψi(x), c ∈ Rk

is a column vector of coefficients, and K ∈ Rk×k is
the projection of Koopman operator onto the space of
functions spanned by the dictionary D.

To compute the matrix approximation K of the Koopman
operator from data, we gather and store data in the form
of snapshot matrices



X = [x1 , · · · , xm] (20)

Y = [y1 , · · · , ym] (21)

where the matrices X and Y contain m state observations
on the columns and where yi = F (xi) for i = 1, . . . ,m.
We then lift the measurement data by evaluating the
dictionary functions at each measurment to obtain the
lifted data matrices ΨX ,ΨY ∈ Rk×m as follows.

ΨX = [Ψ(x1) , · · · , Ψ(xm)] (22)

ΨY = [Ψ(y1) , · · · , Ψ(ym)] (23)

Then, following from Eqs. 17 and 19, we have

ΨY = K⊺ΨX (24)

With this, K can be computed by the following least-
squares minimization

min
K

∥ΨY Ψ
⊺
X −K⊺ΨXΨ⊺

X∥22 (25)

where the least squares problem has been written in
normal form so that the minimization only depends on
the number of dictionary functions used in the projection,
not on the number of measurements.

3.2 Controlled systems

For a control system of the form

xt+1 = Fu(xt, ut) (26)

where ut ∈ U ⊂ Rp is the control input and Fu : X ×
U 7→ X, we take a similar approach to obtain a linear
representation of the system in a lifted space. That is, we
seek a linear approximation of the form

Ψ(xt+1) = AΨ(xt) +But (27)

where A ∈ Rk×k and B ∈ Rk×p are linear predictors
computed from observed trajectory data. To obtain such
an approximation from data, we gather data in the form
of snapshot matrices

X = [x1 , · · · , xm] (28)

Y = [y1 , · · · , ym] (29)

U = [u1 , · · · , um] (30)

as before, where we now have m state observations with
yi = Fu(xi, ui) for i = 1, . . . ,m. We then lift the X and Y
data as in Eqs. 22 and 23 and perform the minimization

min
A,B

∥ΨY −AΨX −BU∥22 (31)

or as a least squares problem,

min
M

∥V −MW∥22 (32)

where

W =

[
ΨX

U

] [
ΨX

U

]⊺
, V = ΨY

[
ΨX

U

]⊺
,

A is given by the first k columns of M , and B is given by
the final p columns of M ∈ Rk×(k+p).

4. MPC FORMULATION

For the off-road vehicle system as described in Sec 2, the
equations of motion define a dynamical system of the form
of Eq. 26. With this system, we wish to determine a control
strategy for traversing an uneven terrain while reducing
vertical oscillations of the vehicle chassis. Such a control
problem is readily framed as an optimal control problem,

where these goals are encoded in a cost function. In par-
ticular, a receding horizon approach such as MPC allows
us to efficiently solve this optimal control problem while
accounting for constraints, especially since the Koopman
lifting framework allows us to represent the system in a
linear fashion. The linear representation of the system is
significant, as it ensures that the optimization problem will
be convex so long as the objective function is quadratic in
the lifted states and controls.

For convenience, we will introduce the notation zt = Ψ(xt)
for the lifted state, and thus Eq. 27 becomes

zt+1 = Azt +But

where A and B are computed as described in Sec. 3.2.
With this, we will consider a finite time optimal control
problem in terms of the lifted state in the form

min
ut,...,u(t+N−1)

J
(
(zj)

t+N
j=t , (uj)

t+N−1
j=t

)
(33)

to be solved at each time step t for the optimal control
sequence over an N -step horizon, where the cost function
J is given in the form

J =
(
yN − CzN

)⊺
QN

(
yN − CzN

)
+

N−1∑
j=0

[(
yj − Czj

)⊺
Q
(
yj − Czj

)
+ u⊺jRuj

]
(34)

where the yj are vector-valued output quantities to be
tracked and C is the matrix which relates those outputs
to the lifted state. With this formulation, any observable
that can be expressed as a linear combination of the lifted
states can be expressed in the regulation problem.

5. APPLICATION TO OFF-ROAD VEHICLE
PROBLEM

5.1 Data collection

In order to apply the Koopman MPC framework to the
off-road navigation problem, we begin by gathering trajec-
tory data by simulating the model described in Sec. 2 of
the half-car moving over uneven deformable terrain. The
simulations are carried out in MATLAB where the data
is gathered at sampling rate of 10 Hz. The model is in-
tegrated using MATLAB’s built-in variable step, variable
order ODE solver, ode113 between these discrete sampled
times.

In all of the simulations performed here, the vehicle
parameters are chosen to be representative of a Polaris
M-RZR [Polaris Government & Defense (2022)] and the
terrain parameters are taken to be representative values
of clay Wong and Reece (1967).

For the computation of the Koopman operator, data is
gathered from 230 trajectories with randomized initial
conditions, integrated over a 20 second timespan (200
samples per trajectory) for 46,000 total measurements. In
this data gathering process, the control force Fu is chosen
randomly at each timestep and held constant over the
0.1s sampling period. The force is chosen from a uniform
distribution on the interval [−2m, 3m], where m is the
vehicle mass. The terrain profile used in these simulations
is specified as a function of x as H(x) = 0.04 sin(0.75x).



5.2 Lifting and Operator Computation

Once the trajectory data is generated by running the
simulations as described in Sec. 5.1, this data is stored
in snapshot matrices as in Eqs. 28-30. The stored states
are the longitudinal and vertical position, velocity, and
acceleration, as well as the pitch and pitch velocity. That
is, the measurement vector is

[x, ẋ, ẍ, z, ż, z̈, θ, θ̇]⊺.

To carry out the lifting of these states, as in Eq. 22-23,
the dictionary functions are chosen to be all monomials in
the measured states of up to order 3, as well as the same
monomials multiplied by cos θ and by sin θ, for a total of
495 dictionary functions.

With the lifted states, the operatorsA andB are computed
by solving the least squares problem in Eq. 32. For
this computation, the matrix W is scaled to improve
conditioning and the minimization is performed using
MATLAB’s built-in generalized minimum residual (gmres)
routine.

5.3 MPC Implementation

Once the operators A and B are computed, they are used
in an MPC implementation, as described in Sec 4. For
this, we consider the following optimization problem at
each time step

min
ut,...,u(t+N−1)

t+N−1∑
j=t

[qx(xj − xd)
2 + qz̈ z̈

2
j + ru2j ] (35a)

subject to: Ψ(xj+1) = AΨ(xj) +Buj (35b)

umin ≤ uj ≤ umax (35c)

for j = t, . . . , t+N − 1

so that the vertical acceleration z̈, control effort u, and
distance from a desired final position xd are penalized.
This is implemented with a control timestep of 0.1s and a
horizon length of N = 30 steps (3 s).

With this, two simulations of the MPC implementation
are performed and compared in Figs. 3, 4, and 5. In both
cases shown, the cost function parameters qx and r are held
constant at 1 and 0.01, respectively; and the desired final
position is set to xd = 30 m. The two simulations shown
compare the cases where the vertical acceleration of the
vehicle is not penalized (qz̈ = 0) and where it is penalized
heavily (qz̈ = 1000). All values are reported in standard
metric units and angle values are given in radians.

Fig. 3 shows the longitudinal position, velocity and acceler-
ation of the vehicle for the two simulations. We see that in
the case where qz̈ = 0, the vehicle accelerates by applying
a maximum force at the beginning of the trajectory before
smoothly slowing the vehicle to zero velocity as it reaches
the desired position. In the case where qz̈ = 1000, the
vehicle applies a braking pattern as it begins to approach
the peaks of the terrain. From Fig. 4, it can be seen that
these deceleration events nearly coincide with the peaks
of the terrain profile. The resulting effect of this control
on the vertical and pitching dynamics is shown in Fig.
5. This shows that the is braking pattern chosen by the
MPC controller results in a reduction of the magnitude
of oscillations in the vertical acceleration z̈, as well as the

Fig. 3. Longitudinal state trajectories. The lines represent
different penalties on vertical acceleration: qz̈ = 0
( ) and qz̈ = 1000 ( ), respectively.

Fig. 4. Top: Longitudinal force control input. Bottom:
Terrain elevation experienced by the vehicle. The lines
represent different penalties on vertical acceleration:
qz̈ = 0 ( ) and qz̈ = 1000 ( ), respectively.
The horizontal black dashed lines show the control
constraints, umin and umax.

other vertical and pitching states. For example, the RMSE
values for the z̈ trajectories shown are 2.595 m/s2 and
1.947 m/s2 for the qz̈ = 0 and qz̈ = 1000 cases respectively.

6. CONCLUSION

We have shown that through a Koopman-based control
strategy, we can identify a high-dimensional, linear rep-
resentation of an off-road vehicle system moving over an
uneven, deformable terrain. With this data-driven repre-
sentation of the system, we are able to account for the
effects of the uneven and deformable terrain and mitigate
the unwanted vertical oscillations through a predictive
control framework.

Future work could include an extension of this controller
to consider preview information about the terrain, which
could be obtained from onboard sensors such as cameras
or lidar. This information could also be incorporated for
controlling additional vehicle features, such as active or
semi-active suspensions. Further, in future work, we plan
to validate this control scheme in experiment or higher



Fig. 5. Vertical and pitching state trajectories. The lines
represent different penalties on vertical acceleration:
qz̈ = 0 ( ) and qz̈ = 1000 ( ), respectively.

fidelity simulation as well as extend it to more complex
offroad driving scenarios.
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