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Abstract: Stabilizing vertical dynamics for on-road and off-road vehicles is an important
research area that has been looked at mostly from the point of view of ride comfort. The advent
of autonomous vehicles now shifts the focus more towards developing stabilizing techniques
from the point of view of onboard proprioceptive and exteroceptive sensors whose real-time
measurements influence the performance of an autonomous vehicle. The current solutions to
this problem of managing the vertical oscillations usually limit themselves to the realm of active
suspension systems without much consideration to modulating the vehicle velocity, which plays
an important role by the virtue of the fact that vertical and longitudinal dynamics of a ground
vehicle are coupled. The task of stabilizing vertical oscillations for military ground vehicles
becomes even more challenging due lack of structured environments, like city roads or highways,
in off-road scenarios. Moreover, changes in structural parameters of the vehicle, such as mass
(due to changes in vehicle loading), suspension stiffness and damping values can have significant
effect on the controller’s performance. This demands the need for developing deep learning
based control policies, that can take into account an extremely large number of input features
and approximate a near optimal control action. In this work, these problems are addressed by
training a deep reinforcement learning agent to minimize the vertical acceleration of a scaled
vehicle travelling over bumps by controlling its velocity.
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1. INTRODUCTION

Significant vertical oscillations are induced in a vehicle
when it drives over an uneven terrain. If kept unchecked,
these vertical oscillations can have an impact ranging from
passenger discomfort to structural damage to delicate ve-
hicular electronics [Elbanhawi et al. (2015)]. Remarkable
disturbance is also generated for onboard sensors resulting
in noisy or false measurements and impeding the over-
all performance of advanced driver assist technologies or
related safety features. This problem now intensifies for
autonomous vehicles which rely predominantly on per-
ception information like camera images and lidar scans,
resulting in sub-optimal or even unsafe driving conditions.
This is illustrated in Fig. 1, which is a compilation of
screen captures of a scaled vehicle running a vision based
lane-centering algorithm and going over bumps. The fig-
ure illustrates how at higher velocity 1(b), the tracking
algorithm has to deal with significantly higher disturbance
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Fig. 1. (a) A scaled vehicle running a vision based lane
centering algorithm and approaching a bump.(b) The
vehicle deviating from the path after hitting the bump
at 5 m/s.(c) The vehicle deviating from the path after
hitting the bump at 0.1 m/s.

as compared to lower velocities 1(c) when traversing a
same bump. This simple example motivates the use of the
longitudinal velocity of the vehicle as a control input in a
framework with the objective of reducing the vertical os-
cillations of the vehicle chassis while traversing an uneven
terrain.

The configuration of a ground vehicle couples the longi-
tudinal and vertical dynamics of the system making the
solution to the stabilization problem both a function of
vehicle speed and suspension parameters [Milliken and
Milliken (1996)]. It is conventional in the automotive



industry to solve this problem using suspension tuning
techniques at the vehicle design stage. The suspension
stiffness and damping values are tuned with a significant
safety factor for passenger comfort taking into account
acceptable driving speeds and expected road bumps. It
has been concluded that limiting oscillations of the ve-
hicle’s vertical acceleration to a frequency range of 0-65
rad/s ensures passenger comfort [Fialho and Balas (2000)].
Researchers have also tried to implement advanced control
techniques varying from structurally changing the suspen-
sion configuration [Ryazantsev and Heng-Xu (2020)] to
incorporating active or semi-active suspension systems [Fu
and Dong (2021)] which modify the suspension character-
istics in real-time. Combination controllers have also been
investigated such as combining a PID controller (which
focuses on minimizing the vertical acceleration) and a
Fuzzy logic controller(which focuses on minimizing pitch)
[Fan et al. (2001)]. Preview-based suspension control is the
latest research trend in this field where the community is
now trying to make adaptive suspensions based on terrain
preview [Theunissen et al. (2021)].

Unfortunately, all of these techniques heavily rely on
adopting complex electronic suspension systems which
are not readily available in all vehicles. In absence of
such systems vehicle longitudinal velocity becomes the
only actuation parameter that can mitigate the vertical
oscillations over a rough terrain. On-road autonomous
vehicles may benefit to some extent from predefined traffic
regulations that specify travel speed over speed bumps
or rumbling strips but velocity control of off-road ground
vehicles for stabilizing vertical oscillations still remains an
important problem.

Off-road ground vehicles face significant wear over their
life cycle. Structural parameters like mass, suspension
characteristics and tire performance will change over time
[Farroni et al. (2017)]. Many of these changes are difficult
to measure or quantify in real-time but can impact the
overall dynamics of the vehicle. In such a scenario, it
becomes relevant to have adaptive control techniques that
can achieve optimal or near-optimal control performance
by adapting or learning solely from the observable data.
Deep reinforcement learning has shown tremendous poten-
tial when it comes to optimal, adaptive and learning-based
control scheme [Sutton et al. (1991)]. In absence of an accu-
rate physics-based, ever-changing system parameters, deep
reinforcement learning can leverage its model free strategy
for learning approximate optimal solutions [Degris et al.
(2012)].

A deep reinforcement learning based control policy that
tries to minimize the vertical oscillations for the vehicle
going over bumps has been demonstrated in this paper
using a one tenth scaled vehicle. The rest of the paper is
organized as follows: the first section discusses developing a
simplified half-car model for the actual scaled vehicle and
setting it up for simulation using a deep reinforcement
learning framework. Next, dynamic reward shaping is
discussed and the simulation results are studied. The final
section elaborates on the actual deployment of the policy
on the scaled vehicle platform and validating the results.

Fig. 2. Quanser QCar: Scaled Autonomous Vehicle

Fig. 3. Track representation

2. PROBLEM FORMULATION

2.1 Problem set up

As shown in Fig. 1, vehicle stabilization tasks are highly
dependent on the vehicle velocity. In many cases, longitu-
dinal vehicle velocity is the only available control param-
eter for stabilizing the vertical dynamics of the vehicle.
Hence, in this work the primary problem is to minimize the
vertical accelerations of a scaled vehicle going over bumps
by controlling its longitudinal velocity based on terrain
preview information provided by an onboard camera. A
scaled vehicle platform, Quanser QCar, is used as a test
bench for developing the reinforcement learning based
control policies. The vehicle tries to traverse a straight
path with irregularly placed bumps as shown in Fig. 3
with the objective of tracking a specified constant velocity
and minimizing the vertical accelerations when going over
the bumps. The scaled vehicle is equipped with cameras
for bump preview, an inertial measurement unit (IMU)
for getting the vertical accelerations, and wheel encoders
for measuring the realized longitudinal velocity. Figure 4
represents the deviations from nominal vertical accelera-
tion (9.8 m/s2) when the scaled vehicle traverses the track
represented in Fig. 3 while tracking a constant longitudinal
velocity of 1 m/s.

Table 1. Model Parameters

Parameter Value

Mass of QCar 1.391 kg

L1, L2 0.128 m

Damping of QCar 77.6 N s/m

Stiffness of QCar 19.6 N/m

Moment of Inertia of QCar 0.001897 kg ·m2

Max Bump Height 0.008 m
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Fig. 4. Vertical acceleration readings when traversing the
track while tracking a constant longitudinal velocity
of 1 m/s

2.2 Surrogate Model

Half-car model: A half-car model with passive suspen-
sions was used to model the QCar’s vertical and pitching
dynamics, as shown in Fig. 5. We use the subscripts 1 and 2
here to denote the front and rear axle of the vehicle, respec-
tively. The equations of motion for the half-car are derived
by summing forces and moments on the vehicle body. The
coordinates considered are the vertical displacement z and
pitch angle θ of the vehicle, both describing the motion of
the center of mass of the vehicle. These equations are given
as follows.

Iθ̈ = −k1(z1 − zh1)L1 + k2(z2 − zh2)L2 (1)

− c1(ż1 − żh1)L1 + c2(ż2 − żh2)L2

mz̈ = −k1(z1 − zh1)− k2(z2 − zh2) (2)

− c1(ż1 − żh1)− c2(ż2 − żh2)

Here the linear stiffnesses of the front and rear suspensions
are given by k1 and k2 and damping coefficients by c1 and
c2. The total mass of the car and moment of inertia are
denoted by m and I respectively. The wheelbase of the car
is broken down into L1 and L2, with L1 being the distance
from the center of gravity to the front wheel, and L2 the
distance from the center of gravity to the rear wheel. The
vertical displacements of the front and rear wheels from
equilibrium due to the terrain are zh1 and zh2 respectively.
The vertical displacements of the chassis from equilibrium
at the front and rear axles are z1 and z2, respectively,
which can be written in terms of z and θ as follows.

z1 = z − L1 cos θ
z2 = z + L2 cos θ.

We model the terrain profile here as a continuous function
of the longitudinal displacement of the vehicle, x. So,
the displacement of each wheel from equilibrium is given
by zhi = g(xi) for i ∈ {1, 2}. Then by chain rule, the
corresponding wheel velocity is written as żhi = g′(xi)ẋi,
where the longitudinal position of the front and rear axles
are given by x1 = x+ L1 cos θ and x2 = x− L2 cos θ.

In order to model a terrain composed of discrete bumps,
as shown in Fig. 3, we take the function g(x) to be a
summation of Gaussian functions, with each Gaussian

k2 c2 k1 c1

zh2
zh1

z2 z1z

θ

L2 L1

x

g(x)

m, I

Fig. 5. Half-car vehicle model

representing the profile of a bump. That is, for a terrain
composed of a series of Nb bumps centered around the
mean positions µj and with spread characterized by vari-
ances σ2

j , we would have

g(x) =

Nb∑
j=1

Hj exp

(
−(x− µj)

2

2σ2
j

)
.

Finally, we take the longitudinal dynamics to be described
by a first-order delay on a commanded velocity, ux. That
is,

τ ẍ+ ẋ = ux (3)

with τ being the time constant. In the reinforcement
learning framework, we take the command velocity, ux to
be the action chosen by the agent.

The numerical values used in simulation for the constant
parameters in this model are given in Table 1.

2.3 Deep Deterministic Policy Gradient

The deep deterministic policy gradient (DDPG) [Lillicrap
et al. (2015)] is a reinforcement learning agent that can
deal with continuous state and action spaces. As shown
in Fig. 6, the agent is comprised of two deep neural
networks, actor and critic, which work in tandem during
the training process. The objective of the training process
is to learn a control policy such that the vehicle tracks
a prespecified desired velocity, ẋd, while also minimizing
the vertical acceleration, z̈. In the current framework,
the vehicle velocity, ẋ, the vertical acceleration, z̈, and
terrain preview are provided as state observations and the
command velocity, ux is the control action. The terrain
preview is provided to the agent as a unitless quantity that
is indicative of the approaching bumps. In practice, this
is calculated as the proportion of the image in which the
bump is seen. This number is inversely proportional to the
distance of the vehicle from the bump, as when the vehicle
is closer to the bump, the bump occupies a larger share of
the camera view. In the experimental setup, the bumps are
covered by a yellow tape and a simple threshold is applied
to the HSV image to obtain a binary image identifying the
bump in the camera view. The terrain preview quantity is
then calculated as the ratio of number of pixels identified
as the bump by the threshold to the total number of pixels
in the image. Figure 7 shows the preview values received
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Fig. 6. Modular representation of the deep deterministic
policy gradient (actor-critic network) interacting with
the simulation and scaled vehicle platforms

by the agent in a single training episode. The peaks in the
plot are an indicator of number of upcoming bumps.

Once the training is complete, the actor network itself
is deployed as the control policy which predicts control
action based on provided observations. The MATLAB-
Simulink platform is used for setting up the training
process. This provides the flexibility to interface with
the simulation frameworks and the actual hardware. As
discussed in earlier sections, the majority of the training
first takes place in the simulation framework using the
simplified half-car model as a learning environment. As
referenced in Fig. 6, the same tool-chain can now also
interact with the QCar over a TCP/IP connection for
further training or deployment.

Reward function: The notion of reward function is sim-
ilar to a cost function, where there is a parameterized
objective function, which influences the efficient and cor-
rect convergence of the learning algorithm. The DDPG
agent learns a policy such that this reward function is
maximized. Eq. 4 gives a nominal form of the reward
function employed here. This form is chosen so that the
maximum value will be zero when the vertical acceleration,
z̈, is equal to 9.8 m/s2 and the longitudinal velocity, ẋ, is
equal to the desired velocity, ẋd.

R = −w1(z̈ − 9.8)2 − w2(ẋ− ẋd)
2 (4)

Here w1 and w2 are weights that quantify the relative im-
portance of the two terms in the reward. Reward shaping
is a popular technique in which human bias from access
to certain information can be explicitly modelled in the
reward function to improve the learning process. In this
work, a dynamic reward shaping approach is implemented
which modulates the weights, w1 and w2, of the reward
function parameters based on the preview information.
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Fig. 7. Preview of the bump as associated with the binary
pixel information

Three variations of the reward function, given by Eq. 5 to
Eq. 7 were studied for minimizing the peak and RMSE
acceleration values while tracking a certain velocity. In
the statically weighted reward given by Eq. 5, the weights
for the function parameters stay constant throughout the
simulation episode.

R = −(z̈ − 9.8)2 − 75(ẋ− ẋd)
2 (5)

In the conditionally weighted reward given by Eq. 6, the
weights change if a certain condition is met. This condition
is based on the pixel area fraction discussed in Sec. 2.3,
shown in Fig. 7, and denoted here by p.

R =

{
100(z̈ − 9.8)2 − 75(ẋ− ẋd)

2 if p > 0.05

−(z̈ − 9.8)2 − 75(ẋ− ẋd)
2 otherwise

(6)

In the function weighted reward, Eq. 7, the weights are a
function of the bump preview and vary linearly with the
pixel preview quantity.

R = −w(p)(z̈ − 9.8)2 − 75(ẋ− ẋd)
2

w(p) = 100 p
(7)

In the latter two reward formulations, the vertical accelera-
tion is penalized more as the vehicle approaches the bump.
The agent is trained for a total of 500 episodes in the
simulation framework with training parameters mentioned
in table 2.

Table 2. Training Parameters

Parameter Value

Noise variance 0.8

Noise decay rate 1e−4 m

Policy learning rate 1e−4

Smoothing Factor 1e−3 m

2.4 Sim2Real Deployment

Since the simulation environment is idealistic and prone
to modelling inaccuracies, the agent is supplemented by
additional training on the physical vehicle. This is done
so that the idealistic policy learned in the simulation will
adapt to actual vehicle parameters, sensor information
and communication delays making it an adaptive learning-
based control. Hence, after simulator training, the agent



0 1 2 3 4 5 6 7 8

0

0.5

1

1.5
(a) Realized Velocity for Various Rewards

0 1 2 3 4 5 6 7 8

-100

-50

0

50

100
(b) Vertical Acceleration for Various Rewards

Fig. 8. Simulation Results : (a) Realized Velocity (b) Ver-
tical Acceleration (Blue : statically weighted reward
(Eq. 5), Red: Condition weighted reward (Eq. 6),
Black: Function weighted reward (Eq. 7))

was further trained for an additional 20 episodes using
the scaled vehicle. MATLAB - Simulink code generation
capability was used for deployment on the QCar hard-
ware.During deployment, the QCar communicated wire-
lessly with a host machine providing actuation signals
(command velocity) based on the observation data re-
ceived from the Qcar (IMU and image pixel information).
The communication frequncy was maintained at 120 hz.

3. RESULTS AND DISCUSSION

3.1 Simulation Results

Figure 8 shows a performance comparison of the policies
trained with the three different reward formulations (Eqs.
5-7) applied in the simulation environment. When trained
for exactly same duration, the agent trained with function
weighted reward develops a policy that penalizes the
vertical acceleration more and as a result shows significant
reduction in the peak as well as root mean squared error
values for acceleration without much drop in the velocity
tracking performance as compared to the other two. For
this reason, the agent with function weighted reward was
selected for further training and deployment on the scaled
vehicle.

3.2 Sim2Real Adaptation

With the hardware configuration mentioned in section 2.4,
the scaled vehicle platform is trained for 20 more episodes
on physical bumps. Figure 9 shows the policy improvement
over the episodes. The blue line shows the policy directly
out of simulation and the red line indicates after 20
additional training episodes on the scaled vehicle. After
this additional training, the agent learns to command
much lower velocity over the series of bumps as compared
to the simulation-only case. This can be seen by observing
the blue and red vertical dashed lines in Fig. 9, which
indicate where the series of bumps occurs in each case.
Figure 9(a) shows the pixel ratio preview of the bump as
seen by the agent. The actual bump occurs slightly after
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Fig. 9. Agent adapting to real data: Directly after simula-
tion (Blue) and after 20 training episodes (Red)
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Fig. 10. Comparison of Acceleration values : Directly after
simulation (Blue) and after 20 training episodes (Red)

the preview signal peaks. It can be observed that after 20
episodes of training on the scaled vehicle, the vehicle slows
down slightly after the bump preview whereas without this
training it slows down just as the bump is in sight.

3.3 Results

The plots in Fig. 10 show the vertical acceleration readings
for the vehicle going over the bumpy track. The blue dotted
line are from an open loop case where the vehicle is given a
constant command velocity of 1 m/s without any influence
of the control policy. The solid red line represents the
values when the vehicle travels at the speed modulated by
the reinforcement learning policy. The peaks are slightly
offset as in the latter case the policy commands a lower
velocity thus delaying the encounter with the bumps. It
can be observed that the peak acceleration values are
significantly reduced when the velocity is controlled by the
reinforcement learning controller.



3.4 Validation

The velocity profile realized by the policy does seem to
reduce the vertical accelerations as compared to the con-
stant velocity case but it can always be argued that going
as slow as possible would be the solution to minimizing the
vertical acceleration. To verify if this is really the case, the
vehicle was made to go over a bump for velocities ranging
from 0.1 m/s to 1 m/s at increments of 0.1 m/s. This was
conducted for multiple trials and the data is plotted in
Fig. 11. Figure 11(b) shows the velocities used for trial
and 11(a) shows the resultant vertical acceleration when
going over the bump. It can be observed from this that
at velocities lower than roughly 0.6 m/s (indicated by
the dashed line in Fig. 11(b)) further velocity reduction
doesn’t have a significant effect on the vertical acceleration
values. The dashed line in Fig. 11(a) shows that roughly
-3 m/s2 is the maximum possible drop in peak vertical
acceleration values that can be obtained by reducing the
forward velocity. This information helps conclude that
ideally, the controller must command velocity such that
the realized velocity should be in the range of 0.6 m/s
to 1.0 m/s. Going anything below 0.6 m/s won’t have a
significant impact on the acceleration values. It can be
observed from the figure 9(b) that the realized velocity
stays in a similar range of 0.5 m/s - 1 m/s, thus indicating
that the control policy learned is non-trivial.

4. CONCLUSION AND FUTURE WORK

In this work, a DDPG agent is trained to develop a control
policy for minimizing vertical acceleration for a scaled
vehicle going over bumps. The primary motivation for the
work is to develop solutions for conventional vehicles or
mobile robot platforms that do not have access to active
suspension systems or articulated wheel structures. As a
future step, it could be beneficial to develop an end-to-
end framework where instead of binary pixel information
for the bump, a raw image data can be used as a feature
input. A future work might include using the raw image
and the binary image both as a feature input to study if it
makes the policy any more robust to photo-sensitivity. Ad-
ditionally, future lines of research could consider how this
algorithm could couple with more advanced autonomy and
motion planning, such as obstacle detection and avoidance
or tracking of more complex paths. As an extension to
full scaled vehicles, certain aspects of ergonomics and pas-
senger comfort can be incorporated as constraints in the
reward function to avoid jerks while providing command
velocity.
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