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ABSTRACT
We investigate the dynamics of a pair of spinning spheres or

microrotors in a fluid at low Reynolds numbers. These microro-
tors are each approximated by a rotlet, a fundamental singularity
of the Stokes equation. Singularities of Stokes flows serve as use-
ful theoretical models for microswimmers and micro-robots. Rot-
let models of microswimmers have received less attention since
a rotlet cannot generate translation by itself if the only control
input is the rate of spin or strength of the rotlet. However a
pair of rotlets can interact and execute net motion. In an un-
bounded domain of fluid, the positions of a pair of rotlets are not
fully controllable due to the existence of an invariant. However,
in a confined domain, we show that the positions of the pair of
spheres are small time locally controllable. We show how control
inputs can be constructed based on combinations of Lie brackets
to move the rotlets from one point to another in the domain.

1 INTRODUCTION
The ability to precisely maneuver a micro-robot or a collec-

tion of small robots in a small scale fluid environment has enor-
mous implications to areas such as targeted drug delivery [1–4],

particle and cell manipulation [2–5], cell identification and diag-
nostics [6], and the fabrication of novel materials with tunable
properties [7]. In recent years, magnetic microswimmers that are
actuated by means of an external magnetic field have attracted
much attention, in part due to the feasibility of fabrication of
such robots and the easy means of actuation via a time varying
external magnetic field [8–13].

The fabrication of a magnetic swimmer with a specialized
geometry is necessary because of the reversibility of flow at low
Reynolds numbers [14]. In general, the actuation for the micro-
robots is not a force that directly leads to a ‘pull’ or ‘push’, as
these require large gradients of electric or magnetic fields. In-
stead, the actuation is in the form of a torque due to a time-
varying magnetic field, which spins the swimmer. The inter-
action of the spinning body with the viscous forces produces a
propulsive force. The mobility tensor of the swimmer, which re-
lates the viscous forces on the swimmer to its velocity, has to
possess a certain form with off-diagonal terms for viable loco-
motion to occur [15, 16]. A mobility tensor of this form results
from geometric asymmetries of the body. For instance, a micro-
robot in the shape of a sphere or an ellipsoid cannot swim due to
a rotating magnetic field in the absence of a boundary, as these
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bodies do not possess an asymmetry that would enable locomo-
tion. The dynamics of microswimmers with complex geometries
are difficult to model due to the complexity of the associated mo-
bility tensor which couples rotational and translational motion.
Further complexity of the system emerges due to the interaction
of a micro-robot with any nearby walls or boundaries.

We address this problem by investigating the motion of
spherical magnetic rotors whose mobilities are very simple to
compute. While a single spinning sphere cannot swim at all in
an unbounded domain, two or more closely spaced spheres can
interact hydrodynamically and swim together. Such pair swim-
mers with very simple geometries do not require any additional
fabrication and can replace a single micro-robot with a complex
geometry.

In this paper, we consider the problem of controlling the mo-
tion of two such microrotors in a confined domain. We consider
a well known approximation of a spinning sphere by a two di-
mensional rotlet, a singularity of the Stokes equation [15–18].
The velocity field due to a spinning sphere confined to a cross-
sectional plane whose normal vector is aligned with the axis of
rotation and which passes through the center of the sphere can
be approximated by a two-dimensional rotlet [18]. Such a model
is appropriate for neutrally buoyant spheres that are constrained
by some mechanism, such as a viscous film [19, 20]. Similar
two-dimensional models have also been applied to systems of
rotating disks [21]. The control inputs for our system are taken
to be the strengths of the rotlets, which are directly proportional
to the torques on the spheres due to the external magnetic field.
Interestingly, we show that the motion of a pair of microrotors
is fully controllable only when they swim in a confined domain
(of any finite size) but not in the idealized setting of an infinite
domain.

2 DYNAMICS OF TWO MICROROTORS
The Stokes equations describing the motion of a fluid at a

scale where inertial forces are negligible and viscous forces dom-
inate are

∇p = µ∇
2u

∇ ·u = 0
(1)

subject to boundary conditions, where u is the velocity of the
fluid and p is the pressure. Singularity solutions of the Stokes
equation and linear combinations of such solutions have served
as popular models for locomotion [22]. The rotlet is a singularity
that describes the velocity of the fluid due to a torque exerted on
it, such as due to the spin of the sphere.

2.1 Rotlets in the Unbounded Domain R2

The velocity field of the fluid at x ∈ R2 due to a rotlet of
strength γ k̂ located at x0 is given by

u(x) =−γ k̂× x−x0

‖x−x0‖2 . (2)

where k̂ is the unit vector orthogonal to the plane of motion.

The stream lines induced by the rotlet form concentric cir-
cles around the rotlet, with the speed of the fluid along these
streamlines decreasing with the distance from the rotlet. In (2),
the velocity u(x) becomes undefined at x = x0. This singular-
ity manifests itself only in the tangential component of the fluid
along the streamlines. That is, in the limit of x = x0, a fluid par-
ticle collocated with the rotlet spins in place but does not move.
This motivates one to consider only the desingularized compo-
nent of the velocity field by assuming that the rotlet does not
have a self-induced velocity [16, 18]. Therefore a single rotlet
does not move.

If n rotlets are present in the domain, with the rotlet locations
being (x1, ...,xn), then each rotlet is advected by the velocity field
induced by the other n− 1 rotlets. The velocity of each of the
rotlets is given by

dxi

dt
=

n

∑
j=1
j 6=i

γ j
(yi− y j)

R2
i j

dyi

dt
=

n

∑
j=1
j 6=i

−γ j
(xi− x j)

R2
i j

(3)

where Ri j =
√
(xi− x j)2 +(yi− y j)2 is the distance between the

i-th and the j-th rotlets.

Note that while the velocity of the fluid described by (2) is
not continuous at the locations of the rotlets, the dynamics of the
rotlets themselves are governed by C∞ vector fields.

We will consider the specific case of the motion of two
rotlets with the control inputs being the strengths of the rotlets,
γ1 and γ2. Equation (3) defines a driftless control affine system,
where the positions of the rotlets, ξ = [x1,y1,x2,y2]

T evolve on
the configuration manifold R4.

We show that regardless of the rotlet strengths, the distance
between the rotlets remains invariant. This is seen through a di-
rect calculation. Suppose R denotes the distance between the two
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rotlets

d
dt

R2 =
d
dt
((x2− x1)

2 +(y2− y1)
2)

= 2(x2− x1)(ẋ2− ẋ1)+2(y2− y1)(ẏ2− ẏ1)

=
2

R2 (x2− x1)(γ1(y2− y1)− γ2(y1− y2))

+
2

R2 (y2− y1)(−γ1(x2− x1)+ γ2(x1− x2))

=
2

R2 (x2− x1)(γ1 + γ2)(y2− y1)

− 2
R2 (x2− x1)(γ1 + γ2)(y2− y1)

= 0.

This implies that the control system (3) is not fully controllable,
or even locally controllable since neither rotlet can move relative
to the other rotlet along the line connecting them.

2.2 Confined Domain with Circular Boundary
In [17], Meleshko and Aref have shown that the velocity at

a point x = (x,y) in a bounded, circular domain due to a single
point rotlet of strength γ located at x = b,y = 0 is described by
the stream function

ψ(x,y) = ψ1 +ψ2 =
γ

2
lnA(x,y)+

γ

2

[
ln

1
B(x,y)

+
C(x,y)
B(x,y)

]
(4)

where, if we convert their expression from polar to Cartesian co-
ordinates,

A(x,y) = r2−2bx+b2

B(x,y) = a2−2bx+
(

r2b2

a2

)
C(x,y) =

(
1− r2

a2

)(
a2− r2b2

a2

)

Here, r =
√

x2 + y2 and a is the radius of the circular domain.
The stream function ψ1 = (γ/2) ln(A(x,y)) is the same as for the
rotlet in the unbounded domain R2 and the stream function ψ2 =
(γ/2)(1/B(x,y) +C(x,y)/B(x,y)) is due to a system of image
singularities placed outside the circular domain. The combined
stream function ψ produces a fluid velocity field that satisfies
the boundary condition of zero normal and tangential velocity on
the boundary. Differentiating (4) gives the velocity field due to a
single rotlet.

The velocity of the fluid at a point (x,y) due to a rotlet of
strength γ1 located at (x1,y1) is obtained by a rotation transfor-

mation

u(x,y) = R−1(θ1)
γ1

2


(B

A )(BAy−ABy)

B2 +
BCy−CBy

B2

−(B
A )(BAx−ABx)

B2 − BCx−CBx

B2

 (5)

where Ax,Bx,Cx and Ay,By,Cy denote the partial derivatives of
the functions with respect to xb and yb respectively with xb =
R(θ1)x. Here θ1 = arctan(y1/x1) and R(θ1) is the rotation ma-
trix,

R(θ1) =

 cosθ1 sinθ1

−sinθ1 cosθ1


that transforms the system to a coordinate system in which the

rotlet lies on the positive x-axis at b =
√

x2
1 + y2

1. The velocity of

the fluid u is zero if x2 + y2 = a2.
As in the case of the unbounded domain, the velocity of the

rotlet is desingularized, i.e. a rotlet does not induce a velocity on
itself. However the image singularities do induce a velocity to
the rotlet,

dx1

dt

dy1

dt

= R−1(θ1)
γ1

2


−By

B
+

BCy−CBy

B2

Bx

B
− BCx−CBx

B2

 . (6)

When n rotlets are present in the circular domain, the veloc-
ity of the i-th rotlet is the sum of the velocities induced by its own
image singularities, the other n−1 rotlets, and the image systems
of the other n− 1 rotlets. In particular, the governing equations
for the motion of two rotlets of strengths γ1 and γ2 respectively,
in the circular domain are

dxi

dt

dyi

dt

=

2

∑
j=1
j 6=i

R−1(θ j)
γ j

2


(B

A )(BAy−ABy)

B2 +
BCy−CBy

B2

−(B
A )(BAx−ABx)

B2 − BCx−CBx

B2



+ R−1(θi)
γi

2


−By

B
+

BCy−CBy

B2

Bx

B
− BCx−CBx

B2


(7)
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3 CONTROLLABILITY
The position of the two rotlets parameterized by ξ =

[x1,y1,x2,y2]
T evolves on the configuration manifold Q =

{(x1,y1,x2,y2) ∈ R4|x2
1 + y2

1 ≤ a2 ∧ x2
2 + y2

2 ≤ a2}. The tangent
space at any point ξ ∈ Q will be denoted by TξQ. The govern-
ing equation (7) for the motion of the rotlets is a driftless control
affine system, Σ, with the strengths of the rotlets being the control
inputs u1 and u2

Σ : ξ̇ = g1(ξ )u1 +g2(ξ )u2 (8)

where g1 and g2 are C∞ vector fields and u1 ∈ R and u2 ∈ R.
Here each of the the vector fields gi(ξ ) is a column vector whose
elements are the coefficients of γi from (7).

3.1 SMALL-TIME LOCAL CONTROLLABILITY
We first show that the two rotlets can move in any direc-

tion from almost any initial positions in an arbitrarily small time,
i.e.for almost any initial state ξ0 of the control system Σ, and
small enough time t0, the reachable set RΣ(t < t0,ξ0) contains a
neighborhood of ξ0. This is shown using the Lie algebra rank
condition (LARC) [23–26].

Given two vector fields, gi and g j the Lie bracket, denoted
[ gi,g j ] is defined as

[ gi,g j ] = ∇g j gi−∇gi g j.

This Lie bracket can be interpreted as the infinitesimal mo-
tion that results from flowing in the sequence of directions
gi ,g j ,−gi ,−g j. Associated with Σ is a distribution

∆ = span{g1,g2}

whose closure under Lie bracketing we denote by ∆̄. By Chow’s
theorem, the system Σ of (8) is locally controllable at a point
ξ ∈ Q if dim(∆̄ξ ) = dim(TξQ) [23–26]. This conclusion of
nonlinear control theory allows us to evaluate whether a system is
small time locally controllable (STLC) at a point ξ by checking
the rank of the Lie algebra ∆̄ξ . This is called the Lie algebra rank
condition (LARC). We also note that for drift-free systems such
as Σ, small-time local controllability implies controllability [23].

To evaluate the controllability of a system of two rotlets
in a confined circular domain, we apply the LARC to (7).
Through computations in MAPLE it was found that there exists
a nonempty subset C ⊆Q in which the system is STLC. Specifi-
cally, by numerically evaluating a set of Lie brackets for 10,000

different values of ξ we find that the vector fields

g1

g2

[ g1,g2 ]

[ g1, [ g1,g2 ] ] ]

(9)

span the tangent space TξQ = R4 at all points ξ ∈ Q except the
special configurations in which both rotlets lie on a chord pass-
ing through the center of the circular domain. Therefore, from
any initial configuration ξ0 ∈ C, the system of two rotlets can
be driven in any direction in an arbitrarily small amount of time
through a motion generated by the Lie brackets given in (9).

Note that the system may still be STLC for ξ ∈ Q \C. For
initial conditions in Q \C, the vector fields g1, g2, [g1,g2] are
linearly independent. Since we only consider the brackets of (9),
it is possible that there exists a Lie bracket of higher order that is
linearly independent of the vector fields g1, g2, [g1,g2].

4 Simulation of Lie Brackets
Now that it has been shown that for most configurations,

four linearly independent vector fields from the Lie algebra can
be found to span the tangent space, an additional difficulty re-
mains in using the control inputs γ1 and γ2 to generate the mo-
tions associated with each of these vector fields.

The motion associated with the vector field g1 is readily sim-
ulated, as it corresponds to the case where γ2 = 0 and γ1 6= 0. The
resulting motion, found by integrating (7) from an initial config-
uration ξ0 ∈ C is depicted in Figure 1. Similarly, the motion
associated with the vector field g2 is simulated by integrating (7)
for the case where γ1 = 0 and γ2 6= 0. This result is depicted in
Figure 2.

The motion given by the vector field [g1,g2] is not as simply
simulated. To produce this motion, we consider the interpreta-
tion of the Lie bracket as the infinitesimal motion produced by
flowing in the sequence of directions g1 ,g2 ,−g1 ,−g2. With
this, the motion is numerically simulated by cycling through this
sequence of inputs over a period of 1 time unit. The resulting
motion over an interval of 50 periods is shown in Fig. 3.

The motion given by the vector field [g1, [g1,g2]] is simu-
lated using a similar strategy by flowing in the sequence of di-
rections specified by g1 , [g1,g2] ,−g1 ,−[g1,g2] over a period
of one time unit. In the [ g1,g2 ] portions of this sequence, the
input cycles through the sequence for the [g1,g2] bracket with a
frequency four times higher than the frequency of changing in-
puts in the [g1, [g1,g2]] sequence. The resulting motion over an
interval of 50 periods is shown in Fig. 4.
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FIGURE 1: SIMULATION OF ROTLET MOTION ALONG THE
VECTOR FIELD g1, WHICH CORRESPONDS TO THE INPUT γ1 =
1 AND γ2 = 0 FOR ONE TIME UNIT FROM AN INITIAL CON-
FIGURATION ξ = [0.5 , 0.5 , −0.5 , 0.5]T , DEPICTED BY RED
MARKERS.

FIGURE 2: SIMULATION OF ROTLET MOTION ALONG THE
VECTOR FIELD g2, WHICH CORRESPONDS TO THE INPUT γ1 =
0 AND γ2 = 1 FOR ONE TIME UNIT FROM AN INITIAL CON-
FIGURATION ξ = [0.5 , 0.5 , −0.5 , 0.5]T , DEPICTED BY RED
MARKERS.

4.1 Motion in a Given Direction
It has been shown that the vector fields given by the Lie

brackets in (9) span the tangent space Tξ0
Q associated with the

system Σ of (8) at any configuration ξ0 ∈ C, and thus Σ is lo-
cally controllable from these configurations. Therefore, a mo-

FIGURE 3: ROTLET MOTION DUE TO [g1,g2] FOR 50
TIME UNITS FROM AN INITIAL CONFIGURATION ξ0 =
[0.5 , 0.5 , −0.5 , 0.5]T , DEPICTED BY RED MARKERS. THE
LEFT SUBFIGURE DEPICTS THE MOTION OF ROTLET 1 FOR
ONE CYCLE COMPOSED OF FLOWS ALONG g1 , g2 , −g1 , −g2
FOR 1 TIME UNIT TOTAL. THE RIGHT SUBFIGURE DEPICTS
THE MOTION OF ROTLET 1 FOR 50 SUCH CYCLES.

tion in the direction of any vector v ∈ Tξ0
Q may be generated by

some linear combination of the Lie brackets that span the tangent
space. With the Lie brackets given in (9) we can write

v = a1g1 +a2g2 +a3[ g1,g2 ]+a4[ g1, [ g1,g2 ] ] (10)

or, in matrix form

v = G(ξ0) a

where G(ξ0) is the matrix with columns given by the vector fields
in (9) evaluated at the initial configuration ξ0 and a is a vector of
coefficients. While the matrix G(ξ0) depends on the initial con-
figuration, we have shown that it has full rank for any ξ0 ∈ C.
Therefore, G(ξ0) is invertible and we can solve for the coeffi-
cients needed to achieve motion in an arbitrary direction v∈ Tξ0

Q
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FIGURE 4: ROTLET MOTION DUE TO [g1, [g1,g2]] FOR
50 TIME UNITS FROM AN INITIAL CONFIGURATION ξ0 =
[0.5 , 0.5 , −0.5 , 0.5]T , DEPICTED BY RED MARK-
ERS. THE LEFT SUBFIGURE DEPICTS THE MOTION OF
ROTLET 1 FOR ONE CYCLE COMPOSED OF FLOWS ALONG
g1, [g1,g2],−g1,−[g1,g2] FOR 1 TIME UNIT TOTAL. THE
RIGHT SUBFIGURE DEPICTS THE MOTION OF ROTLET 1 FOR
50 SUCH CYCLES.

as

a = [G(ξ0)]
−1 v (11)

Solving this equation yields the linear combination of the vector
fields that is required to instantaneously steer the system from a
given state in the direction specified by v ∈ Tξ0

Q.
As a concrete example, we consider the system at the begin-

ning state shown in Figs. 1 - 3, where

ξ0 = [0.5 0.5 −0.5 0.5]T

in a domain bounded by a circle of radius a = 1. If we wish to
instantaneously steer the system in the direction specified by

v = [1 0 0 0]T

which corresponds to motion of rotor 1 in a direction parallel to
the x-axis, then from (11) we find the coefficients of each vector
field needed for this motion to be

a≈ [6.69 9.20 −183. 11.2]T

5 CONCLUSION
Rotlets serve as a convenient mathematical approximation

for realizable physical systems, such as spheres spinning in a low
Reynolds number flow due to the presence of a rotating mag-
netic field. A single rotlet cannot generate a translation in an
unbounded domain and while they can move in a confined do-
main, such as a circular region, this motion is not controllable.
We have shown that due to the existence of an invariant, the mo-
tion of a system of two rotlets is uncontrollable in the idealized
setting of an unbounded domain. However, through numerical
computations and the application of the Lie algebra rank condi-
tion, we have shown that a comparable system of two rotlets in a
bounded, circular domain is controllable due to the presence of a
boundary. This finding implies that spherical microrobots, which
are easily fabricated, can move as pairs in a controllable fashion,
even though individually they cannot. Furthermore, the model
used herein of the rotlet in the presence of a boundary is more
representative of a physical system than the idealized model of
an unbounded domain. Therefore, this mathematical finding im-
plies that such a physical system can be controlled by varying
the inputs systematically in accordance with an appropriate set
of Lie brackets.

Potential future directions of study include path planning for
bodies with more complex geometries, which could improve the
controllability of the system by introducing additional asymme-
tries.
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