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Abstract— Remotely actuated micro-scale swimming robots
have received considerable research attention in recent years
due to their promising potential for biomedical applications
such as minimally invasive drug delivery. An important require-
ment for such applications is the ability of the robot to track
a reference trajectory. In this work, a micro-robot driven by a
torque induced through an applied magnetic field is considered.
The spatial and rotational dynamics are formulated in terms of
the body-frame torque, which is directly related to the magnetic
field in the spatial frame. Controllability of the nonlinear system
is then proven using the Lie algebra rank condition. Finally, an
iterative linear quadratic tracking algorithm is presented and
demonstrated on the system that can track arbitrary paths with
both steady and time-varying velocities.

I. INTRODUCTION

Magnetically driven microswimmers have received in-
creased research attention in the last decade [1], [2], pri-
marily due to the promise of many potential biomedical
applications, such as cell sorting and manipulation, mini-
mally invasive drug delivery and diagnostics, and micro-
surgical assistance. For many of these applications, it will
be necessary for these micro-robots to accurately move in a
controlled manner through complex environments.

Taking the rotating helical bundle of many bacteria as
inspiration, many works have examined the motion of he-
lically shaped or flagellar magnetic micro-robots through a
fluid [3]–[6]. While several low-Reynolds number swimming
systems have been considered from an optimal control per-
spective, most of these works focus on deriving optimal
strokes or gait sequences for deformable bodies [7]–[9],
typically with the assumption of direct control over body
shape changes. In this work, we consider the motion of a
rigid magnetic body due a torque applied through an external
magnetic field. Such micro-robots have been experimentally
shown to exhibit meaningful locomotion due to a uniform
magnetic field with rotating direction [10]–[12]. Alaoui-Faris
et. al [13] showed that a simple sinusoidal oscillation pattern
of the magnetic field actuation does not lead to optimal
locomotion of a flagellar magnetic body. Similarly, our
primary aim in this work is to determine how the magnetic
field should be directed over time in order to move the body
along a prescribed path with a desired speed.

Developing control algorithms based on the dynamics
of a magnetically rotated body is challenging, both due
to the nonlinearities of the rotational dynamics and the
underactuated nature of the set of control inputs. For these
reasons, we take a trajectory optimization approach [14],
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[15] to developing control inputs to steer the system along a
desired spatial trajectory.

In particular, we implement an iterative Linear Quadratic
Regulator (iLQR) control scheme [16], [17]. The iLQR
method is a shooting method that determines the optimal
sequence of control inputs to minimize a quadratic cost
function for a nonlinear system by iteratively linearizing the
system about a nominal trajectory, solving for the optimal
input on the linearized system, and then generating a new
nominal trajectory by applying an improved input to the
nonlinear system. This method has key advantages in that
it can achieve fast convergence through the utilization of a
Riccatti difference equation to solve the discrete-time, linear
optimal control problem [17]. Also, in solving the optimal
control problem in this manner, we generate not only the
optimal control sequence to drive the system along a desired
trajectory, but also an optimal feedback law to stabilize the
system to the optimal trajectory. While this feedback law
is derived using linearized dynamics, it is locally valid in a
region surrounding the optimal trajectory.

The remainder of the paper is organized as follows. In
Section II, we derive the model of the swimmer locomotion
in terms of the governing fluid dynamics and an orientation
parameterization to describe the body’s rotations. In Section
III, we use standard techniques from geometric nonlinear
control theory to show that the system is locally controllable
in terms of the two independent components of the body-
frame torque. In Section IV, we describe the iterative algo-
rithm used to optimize the trajectory of the nonlinear system.
Finally, in Section V, we demonstrate this method with
two numerical simulations: one on a steady, planar, circular
trajectory, and another on an unsteady, three dimensional
trajectory. We present results there for the optimal control
sequence both in terms of the body-frame torque and the
spatially-fixed magnetic field.

II. MODEL OF SWIMMER MOTION

The motion of the artificial swimmers considered in this
work is described by very small length and velocity scales.
In such a setting, the fluid motion generated by the particles
is dominated by viscous forces, while inertial forces are
considered negligible. Therefore, the fluid dynamics are well-
described by the Stokes equations.

The linearity of the Stokes equations implies that the
velocity V and angular velocity Ω of a body moving through
a viscous fluid are linearly proportional to the force F and
torque T acting on the body. This linear map is known as



Fig. 1. Schematic of the microswimmer considered in this paper, shown
in the chosen body-fixed frame of reference.

the mobility relationship and is given here by(
Vb
Ωb

)
=
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K C
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)(
Fb
Tb

)
(1)

where the subscript b indicates that the variables are defined
in a body-fixed frame of reference. Here each of the sub-
matrices K, C, and M are 3×3 matrices that depend solely
on the geometry of the body. Therefore, for a rigid body,
as considered here, the mobility matrix is constant when
defined in a body-fixed frame. While the framework given
here is general enough to apply to any rigid body, a particular
geometry composed of three rigidly connected magnetic
spherical particles with a 90◦ bend is considered, as this is
one of the simplest rigid geometries capable of achieving
torque-driven locomotion [12], [18], [19]. This geometry
is depicted in Fig. 1. The mobility relationship for this
three sphere configuration has been derived previously in
Refs [19]–[21]. In this work, we use the mobility matrix as
derived using the Stokesian Dynamics algorithm [22]–[24],
as explained in [21].

To transform these velocities from the body-fixed frame
of reference to a spatially-fixed frame, we parametrize the
orientation of the body using the ZXZ Euler angles so
that the transformation matrix from spatial frame to body
frame is given by R(Θ), Rz(ψ)Rx(θ)Rz(φ) where Rx and
Rz are the rotation matrices about the body-frame x and
z axes by the given angles. Here we have also introduced
the shorthand notation Θ ,

(
φ θ ψ

)ᵀ. Also, since these
rotation matrices are orthogonal, the inverse transformation
from the spatial frame to the body-fixed frame is given by
R−1(Θ) = Rᵀ(Θ). Furthermore, the relationship between the
body-frame angular velocity and the Euler angle rates of
change can be defined such that Ωb = E(Θ)(dΘ/dt) [25].

In this work, we direct our attention toward microswim-
mers driven by a torque imparted on the body through
an externally applied magnetic field, B. Approximating the
swimmer’s magnetization as a single, permanent magnetic
dipole mb, this torque is computed as Tb = mb ×R(Θ)B
and we assume that there are no external forces acting on
the swimmer body, Fb = 0.

Combining the mobility expression with the rotation kine-
matics, the spatial frame velocity can be related to the applied
torque as

dX
dt

= Rᵀ(Θ)CTb (2)

where X =
(
x y z

)ᵀ is the vector of the spatial frame
position coordinates. The Euler angle rates of change are
also related to the driving torque as follows.

dΘ

dt
= E−1(Θ)MTb (3)

We note here that in the following, the body-frame torque
Tb is considered as the control input, while in a physical
setting, the magnetic field B is directly controlled from
the spatial frame. This formulation is useful, as these body
frame torques can be fed forward to compute a spatial frame
magnetic field input. This computation is possible, as long
it is ensured that the computed torques are orthogonal to the
magnetic moment vector; that is, mb ·Tb = 0 . To ensure
this orthogonality, a component of the torque vector may be
algebraically eliminated , effectively reducing the number of
control inputs from three to two as

Tb =

(
−myTy−mzTz

mx
,Ty,Tz

)ᵀ

(4)

where (mx 6= 0,my,mz) are the components of the magnetic
moment of the swimmer in the body frame. Substituting (4)
into (2) and (3) and denoting the state vector ξ ,

(
Xᵀ Θ

ᵀ)ᵀ
one obtains the control system

dξ

dt
= g1(ξ )u1 +g2(ξ )u2 , g(ξ ,u) (5)

where u1 = Ty, u2 = Tz and the vector fields g1 and g2 are
defined by the coeffiecients of Ty and Tz respectively.

III. CONTROLLABILITY

Equation (5) defines a driftless control affine system on the
manifold M = SE(3). In this section we show that the po-
sition of the swimmer is controllable using the control input
(u1,u2) = (Ty,Tz). We show the controllability through the
application of the Lie algebra rank condition (LARC) [26]–
[28]. For proper application of this condition, it is necessary
that the drift and control vector fields associated with the
system be analytic. However, in the previously defined Euler
angle orientation parameterization, the transformation from
dΘ/dt to Ωb given by E becomes singular for some values
of Θ. Therefore, the inverse transformation is not defined
for all configurations, resulting in control vector fields that
are not analytic on the configuration manifold. Specifically,
the transformation becomes singular when the x-axis rotation
angle θ becomes equal to an integer multiple of π . We
therefore show controllability on M − {θ = nπ}, n ∈ Z.
We note that the singularity at θ = nπ does not represent
any physical phenomenon, but rather is an artifact of this
parameterization of the group SO(3).

The Lie bracket of two vector fields gi and g j is defined
as follows.

[g1,g2] = ∇g j gi−∇gi g j (6)

We then define the distribution ∆ξ as the distribution gener-
ated by the vector fields g1, g2, and all possible Lie brackets
of g1 and g2. The LARC is a necessary and sufficient
condition for accessibility [27], [28], which requires that



dim∆ξ = 6 for the system (5). Since the system of Eq.
5 is driftless, the satisfaction of the LARC at a point ξ0
implies that the system is controllable from ξ0 because the
Lie algebra associated with the distribution ∆ξ0

then spans
the tangent space Tξ0

M [28].
Through symbolic computations in the software Maple

we find that the distribution

∆ξ = span
{

g1,g2, [g1,g2], [g1, [g1,g2]],

[g2, [g1,g2]], [g2, [g1, [g1,g2]]]
}

is such that dim∆ξ = 6 for all ξ ∈M −{θ = nπ}. This
shows that from any initial configuration ξ0, the system can
be driven in any spatial coordinate direction in an arbitrarily
small amount of time.

IV. TRAJECTORY TRACKING
Having established in the previous section III that the

swimmer can be propelled in any direction in an arbitrarily
small time, in this section we describe the iLQR tracking
controller [16], [17]. The work of Sideris and Bobrow [17]
serves as our main reference in implementing this algorithm
and we direct readers there for a more complete treatment,
but we will give a brief overview here.

We begin by discretizing the continuous time system of
Eq. (5) using a simple Euler integration scheme as

ξi+1 = ξi +∆ t g(ξi,ui), gd(ξi,ui) (7)

where the subscript i denotes the discretized timestep and
∆ t is the sampling period. Then for a given desired state
trajectory ξ ∗i , i = 1, . . . ,N and a given desired control trajec-
tory u∗i , i = 1, . . .N− 1, we seek the state sequence ξi and
control sequence ui, together satisfying the dynamics of Eq
(7) and starting from a given initial state ξ0, that minimize
the following quadratic performance index.

J =
1
2
(ξN−ξ

∗
N)

ᵀQN(ξN−ξ
∗
N)+

1
2
(u0−u∗0)

ᵀR(u0−u∗0)

+
1
2

N−1

∑
i=1

{
(ξi−ξ

∗
i )

ᵀQ(ξi−ξ
∗
i )+(ui−u∗i )

ᵀR(ui−u∗i )
}

(8)

In Eq. (8), Q and QN are symmetric, positive semi-definite
weighting matrices and R is a symmetric, positive definite
control weighting matrix.

Then, starting from iteration k = 0, we let Uo
k =(

uo
0 · · · uo

N−1
)

be an arbitrary nominal control se-
quence. The corresponding nominal state trajectory Ξo

k ,(
ξ o

1 · · · ξ o
N
)

is computed by recursively computing the
dynamics ξ o

i+1 = gd(ξ
o
i ,u

o
i ) from the given initial condition

ξ o
0 = ξ0.

We proceed by linearizing the discretized dynamics of Eq.
(7) about the nominal state sequence Ξo

k and the nominal
control sequence Uo

k . For this, we define the linear, time-
varying state and control matrices as

Ai ,
∂gd

∂ξi

∣∣∣∣
ξ

o
i , uo

i

and Bi ,
∂gd

∂ui

∣∣∣∣
ξ

o
i , uo

i .
(9)

Further, we define the deviations from the nominal sequences
as

ξ i , ξi−ξ
o
i and ui , ui−uo

i (10)

and the deviation of the desired sequence from the nominal
sequences as

ξ
∗
i , ξ

∗
i −ξ

o
i and u∗i , u∗i −uo

i . (11)

With this, we consider the following linear-quadratic optimal
control problem on each iteration k.

min
Uk

J =
1
2
(ξ N−ξ

∗
N)

ᵀQN(ξ N−ξ
∗
N)

+
1
2
(u0−u∗0)

ᵀR(u0−u∗0)

+
1
2

N−1

∑
i=1

{
(ξ i−ξ

∗
i )

ᵀQ(ξ i−ξ
∗
i )

+(ui−u∗i )
ᵀR(ui−u∗i )

}
subject to: ξ i+1 = Aiξ i +Biui for i = 0, . . . ,N−1

ξ 0 = 0
(12)

In Eq. (12), Uk is the matrix containing all elements of the
sequence of control deviations from nominal at stage k of
the algorithm, Uk ,

(
u0 . . . uN−1

)
.

The minimization problem given by Eq. (12) is a standard
time-varying, finite horizon linear-quadratic optimal tracking
problem. The solution to such a problem may be found by
solving a Riccati difference equation backwards in time from
a final condition based on the terminal cost QN to obtain a
optimal proportional feedback control law for the linearized
system (see [17], [29]). The optimal control sequence and
corresponding optimal state trajectory are then found by
recursively applying the linearized dynamics

ξ i+1 = Aiξ i +Biui (13)

forward in time from an initial condition ξ 0 = 0.
This process yields the deviation Uk from the nominal con-

trol sequence that solves the tracking problem for nonlinear
system linearized about the nominal control sequence Uk.
As proven in Ref. [17], the deviation sequence Uk provides
a descent direction in the search for a control sequence U
that minimizes the cost function of Eq. (8) subjected to
the constraint of the true nonlinear dynamics of Eq. (7).
Therefore, the improved control input sequence is given by

Uk =Uo
k +αkUk (14)

where αk ∈ (0,1] is an appropriate stepsize. The correspond-
ing state trajectory Ξk can then be computed by recursively
solving the nonlinear dynamics of Eq. (7) forward in time
from the given initial condition ξ0 by applying the control
sequence Uk.

Finally, the algorithm proceeds by setting this improved
trajectory to be the nominal trajectory at the next stage of
the algorithm and incrementing the stage count k.

Xo
k+1 = Xk , Uo

k+1 =Uk , k = k+1



The algorithm then continues on the next stage by re-
linearizing the nonlinear dynamics about the new nominal
trajectory and then re-solving a new linear-quadratic optimal
tracking problem. A more complete description of the algo-
rithm, along with proofs and conditions on convergence, is
given by Sideris and Bobrow [17].

V. NUMERICAL RESULTS

In this section, we present results of numerical simulations,
conducted in MATLAB in which the iterative LQR algorithm
described in Section IV is applied to a trajectory tracking
problem for a three-sphere microswimmer. As previously
detailed, this swimmer is driven by a body-frame torque
induced through a magnetic field controlled from the spatial
frame.

For these simulations we assume a permanent magnetic
moment vector mb = ‖mb‖m̂b where the magnitude is set
to ‖mb‖= 4.0×10−15 J/T, based on the values reported by
Cheang et. al [12]. The direction m̂b is parameterized by the
spherical coordinate angles A and Φ such that

m̂b =
(
sinΦsinA cosΦ sinΦcosA

)ᵀ
. (15)

In the simulations shown here, the angles A and Φ are chosen
so that all three components of vector are nonzero. The
values used are A= π/8 and Φ= π/4 radians. Further, based
on the value reported by Cheang et. al, we constrain the
applied magnetic field to have a magnitude ‖B‖ = 5.0mT.
With this, the upper bound on the magnitude of the velocity
v of the swimmer is v ≤ ‖C‖ · ‖mb‖ · ‖B‖ where C is the
coupling mobility of Eq. (1).

In the application of the iterative LQR algorithm, there
is a design choice to be made in choosing the weighting
matrices Q, R, and QN . Since we are interested only in
tracking a spatial position sequence without regard for the
orientation of the body, we choose the matrix Q to be of the
form Q = q ·diag[1, 1, 1, 0, 0, 0] where q is the magnitude of
the penalty placed on each of the spatial coordinate states
at each timestep in the cost function. The weighting matrix
R is required to be positive definite in order to solve the
Riccatti difference equation. So, R is chosen to be of the
form R= r ·diag[1,1] where r is the magnitude of the penalty
placed on each of the independent control inputs Ty and Tz
at each timestep.

One disadvantage of the iterative LQR algorithm as pre-
sented here is that there is no rigorous means of enforcing
inequality constraints involving either the states or the inputs.
In this problem, there is an upper bound on the magnitude
of the torque that can be applied on the swimmer based on
the magnitudes of the swimmer magnetization and the the
applied magnetic field, given by ‖Tb‖ ≤ ‖mb‖ · ‖B‖. Since
this constraint cannot be rigorously enforced, we instead use
it to guide our choice of the weighting parameters q and r.
To choose these values, we conduct a numerical search over
a range of the ratio q/r. The value of the ratio q/r is then
chosen to minimize the total tracking error of the trajectory
without requiring a torque magnitude that exceeds 80% of
the upper bound.

The choice of the sampling time parameter ∆ t, as shown
in Eq. (7) can also have significant impact on the quality of
results produced by this algorithm. Since the discretization
method employed here is a simple first-order Euler scheme,
it is necessary to maintain a small sampling time so that
the discretized dynamics remain a good approximation of
the continuous time system. In the simulations presented
herein, the sampling time is chosen to be ∆ t = 1.6667×10−4

seconds. The requirement for such a small sampling time
impacts the run-time of the algorithm, but as this algorithm is
not designed for an online computation in which an optimal
control sequence is computed in real time over a finite
horizon, a long run-time is acceptable. Instead of an online
optimization scheme, a more effective choice may be to use
the iterative LQR algorithm to compute the optimal control
sequence offline, before using a stabilizing controller to
reject disturbances and drive the system back to the optimal
trajectory. A major advantage of the iterative LQR algorithm
is that in its solution, it provides not only the optimal control
sequence, but also an optimal feedback stabilization law
for the linearized system, which is also locally valid for
the nonlinear system in a region surrounding the optimal
trajectory.

As mentioned previously, for a given body-frame torque,
for example as generated by the iterative LQR algorithm,
a body-frame magnetic field to generate this torque can be
found as long as the torque vector is orthogonal to the swim-
mer’s magnetic moment vector. Both of these conditions are
met in these simulations, so the body frame magnetic field
is computed as

Bb =
Tb×mb

mb ·mb
+ γ mb

where γ is an arbitrary scalar. Further, as long as the
swimmer’s orientation, Θ is known, this magnetic field may
be transformed to the spatial frame as B = Rᵀ(Θ)Bb. The
arbitrary constant γ is handled by using the constraint that the
magnetic field magnitude be ‖B‖= 5.0 mT to algebraically
eliminate this additional unknown.

In the following subsections, we present two numerical
examples. In the first, we show that the swimmer is capable
of tracking a constant-speed, circular trajectory using the iter-
ative LQR algorithm. In the second, we demonstrate that the
swimmer can track a helical trajectory of varying curvature
and desired velocity. In both simulations, the magnitude of
the spatial deviation from the desired trajectory is on the
order of 0.02 µm at any instant in time. We also present and
discuss the spatial frame magnetic fields required to generate
this trajectory.

A. Example: Steady Circular Tracking

Starting from an initial condition

ξ0 =
(
10 0 0 π/10 π/10 π/10

)ᵀ (16)

we consider the desired spatial frame position coordinate
trajectory

X∗ =
(
10cos(0.2t) 10sin(0.2t) 0

)ᵀ (17)



(a)

(b)

(c)

Fig. 2. Trajectory tracking results for a steady circular path in the spatial
xy-plane. (a) Desired spatial trajectory X and achieved trajectory X∗ (b)
Tracking error e = |X−X∗| (c) Body frame torque Tb required to generate
the trajectory in X shown in (a)

To solve the problem using the methods described above,
we apply the algorithm in a receding horizon manner, in
which the optimal control sequence is computed over a 5
second horizon. Then this horizon is shifted forward in time
by 2.5 seconds, using the latter half of the solution for the
previous horizon as the initial nominal trajectory in the next
call of the algorithm. This sort of iteration is applied to
construct the optimal control sequence to track the desired
trajectory for a timespan of approximately 100 seconds. The
results of this simulation are depicted in Fig. 2 (a), with the
corresponding spatial frame magnetic field inputs shown in
Fig. 3.

These results indicate that in order to achieve optimal
tracking of a circular trajectory with constant speed, values
of the body frame torques are found so that they can remain
nearly constant to achieve the tracking, as is apparent in Fig.
2 (c). Since these torques then cause the swimmer to rotate
relative to the spatial frame of reference, the magnetic field
necessary to generate these torques is periodically rotating,
with its axis of rotation changing direction, remaining nearly
parallel to the xy-plane as indicated in Fig. 3.

B. Example: Unsteady Serpentine Tracking

Starting from an initial condition

ξ0 =
(
0 0 0 0 π/10 π/10

)ᵀ (18)

Fig. 3. Individual components of the spatial frame magnetic field B needed
to produce the trajectory shown in Fig. 2 (a). Note that the magnetic field
is constrained to a magnitude ‖B‖= 5.0 mT

we consider the desired spatial frame position trajectory
given by

X∗ =
(
5sin(0.07t) 15(1− cos(0.03t)) 0.1 t

)ᵀ (19)

The resulting trajectory from the implementation of the
tracking algorithm as described above is given in Fig. 4,
along with the necessary body frame torque sequence re-
quired to generate this trajectory. The spatial frame magnetic
field required to generate this optimal trajectory is given
in Fig. 5. These results indicate that the torques required
to generate the trajectory no longer remain constant, as the
desired velocity and curvature change in time. The magnetic
field required to generate this body-frame torque is given in
Fig. 5. It can be seen that in regions of the path where high
swimmer velocities are required, the magnetic field is forced
to oscillate with a higher frequency. Further, as the desired
direction changes, the direction of the axis of rotation of the
field changes to direct itself along the desired path.

VI. CONCLUSION

The nonlinear optimal trajectory tracking problem has
been investigated for a magnetically-actuated, torque-driven
microswimmer composed of three magnetic spheres arranged
rigidly with a 90◦ bend. Through techniques from geometric
control theory, it has been shown that the system is locally
controllable using the two independent components of the
body frame torque as input. Further, it was shown that
these torques are directly relatable to the spatial frame
magnetic field input. With this, an algorithm was presented
for computing a sequence of inputs to optimally drive the
system along a desired trajectory. The procedure relies on
the linearization of the nonlinear dynamics about a sequen-
tially improving nominal trajectory. Thus this algorithm also
returns a feedback structure that can be used to stabilize the
system to the optimal trajectory. Finally, the efficacy of the
algorithm was demonstrated through numerical simulation of
two examples, showing that the method can provide accurate



(a)

(b)
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Fig. 4. Trajectory tracking results for an unsteady serpentine path in the
spatial position coordinates . (a) Desired spatial trajectory X and achieved
trajectory X∗ (b) Tracking error e = |X−X∗| (c) Body frame torque Tb
required to generate the trajectory in X shown in (a)

solutions for constant and non-constant curvature and for
both steady and unsteady desired velocities.
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