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Magnetically Actuated Artificial
Microswimmers as Mobile
Microparticle Manipulators
Microscale swimming robots have been envisaged for many biomedical applications such
as targeted drug delivery, where the microrobot will be expected to navigate in a fluid envi-
ronment while carrying a payload. We show that such a payload does not have to be phys-
ically bound to the swimmer, but may be instead manipulated by the microrobot through
hydrodynamic interaction. We consider a magnetically actuated artificial microswimmer,
whose locomotion induces a disturbance velocity field in the fluid, which moves a cargo par-
ticle in its vicinity. The problem investigated in this paper is therefore one of coupled loco-
motion-manipulation of two bodies in a fluid. The swimmer is actuated by a uniform,
rotating magnetic field of constant strength leading to net motion in the direction perpen-
dicular to the plane of rotation if the frequency associated with the periodic magnetic
field is above a critical frequency. Below this critical frequency, the swimmer tumbles in
place without net locomotion. Controlled motion of the particle and swimmer is achieved
by switching the planes of rotation of the magnetic field and the frequency of the magnetic
field above and below the critical frequency. The results of this paper show that microswim-
mers can be utilized as mobile manipulators of microparticles in a fluid.
[DOI: 10.1115/1.4046581]
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1 Introduction
Microrobots that can swim and navigate in microchannels hold

great potential for many medical applications such as targeted
drug delivery, cellular manipulation, and diagnostics [1–3]. These
microrobots can derive their propulsive ability via magnetic
[4–6], electric [7], acoustic [8], optical [9], or chemical [10,11] actu-
ation. In many applications, these microrobots are expected to carry
a payload that by itself cannot be propelled or steered easily.
Common solutions require that the cargo particles be bonded to
the microrobot and then be released by the robot when required.
This can pose limitations on the cargo that can be carried. An alter-
native approach is to manipulate particles without contact by
exploiting the hydrodynamic interaction between the microrobot
and the particle. In essence, the microrobot becomes a mobile con-
tactless micromanipulator.
In this paper, we investigate through computations the ability of a

magnetically actuated microswimmer to steer a nonmagnetic parti-
cle of a comparable length scale in its neighborhood in a contactless
manner. Magnetic fields with small magnitude, but time-periodic
direction induce a torque on magnetized particles, thus causing
the particles to rotate. For bodies possessing an appropriate asym-
metry, this rotational motion can lead to propulsion [12]. The pro-
pulsive speed or lack thereof is a function of the frequency of the
magnetic field, and the direction of propulsion depends on the direc-
tion of rotation of the magnetic field. Therefore, control of the direc-
tion and frequency of field rotation enables the steering of a
magnetic swimmer. We show that the swimmer may be used as a
mobile microparticle manipulator, steering the nonmagnetic cargo
particle in a desired direction, as steering the swimmer effectively
controls the fluid velocity field experienced by the cargo particle.
The equations governing this interaction form a driftless control
affine system as a consequence of the lack of inertia in a Stokes
flow. This observation is then used to determine a magnetic field

input to generate controlled motion of both the magnetic
swimmer and the passive particle in arbitrary directions.

2 Modeling of the Swimmer–Particle Interaction
The motion of the artificial microswimmers and particles consid-

ered in this work is described by very small length and velocity
scales, and thus, the corresponding fluid motion is governed by
the Stokes equations. The linearity of the Stokes equations
implies that the forces and torques acting on a body are linearly
related to the velocity and angular velocity of the body [12,13];
this relationship is known as the mobility relationship.
The geometry of the artificial swimmer considered in this paper

consists of three spheres, rigidly connected with a 90 deg bend as
shown in Fig. 1(a). This body is chosen both for the structure of its
mobility matrix and for its ease of fabrication [5]. The swimmer is
to be driven by a torque produced by a magnetic field, with the exter-
nal forcing F e= 0. Thus, to achieve a translational motion, it is nec-
essary that the matrix coupling torque to translational velocity,
denoted C, be nonzero. One of the simplest geometric conditions
for a body to have a nonzero coupling matrix C is that the body
have two mutually perpendicular planes of symmetry, but not three
[12]. The mobility matrix associated with this particular geometry
has been derived previously in Refs. [14–16].
In cases where multiple bodies are present in a fluid, it is also nec-

essary to consider the hydrodynamic coupling between bodies. The
relationship between the forcings and the body velocities is still
linear in this case and is represented using a grand mobility matrix.
In this work, we consider the motion of a particle in the presence
of a microswimmer, so the grand mobility relationship is given by
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where the subscripts s and p indicate the particle and the swimmer,
respectively. In the case of a single rigid body, it is often convenient
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to represent these dynamics in a body-fixed frame of reference, as the
submatrices K, C, andM are dependent only on the body geometry
and thus remain constant in a body-fixed frame. However, in the case
of multiple interacting bodies, each of the terms in this matrix
depends on the relative position and orientation of each body. There-
fore, it is more convenient to define these matrices in a common, spa-
tially fixed reference frame.
To define the grand mobility matrix for this system, we imple-

ment the Stokesian dynamics algorithm [17–19], which has been
recently used to compute the grand mobility tensor of a collection
of swimmers [20]. The method is especially suited for systems com-
posed of spheres moving in a viscous fluid.
This algorithm relies on the multipole expansion of the distur-

bance velocity field due to each sphere along with the Faxén rela-
tionships to compute the effect of this field on all other spheres in
the system. Full details of this derivation along with the expressions
for the elements of this many-sphere grand mobility matrix are
given in Ref. [18].
To condense this matrix describing the motion of all spheres

(denoted by α) into a matrix describing the motion of a rigid
body composed of spheres (denoted by A), we apply the conditions
of rigid body motion that Vα=VA+ΩA × rαA and Ωα=ΩA. Here,
rαA is the vector from a chosen reference of the rigid body A to
the center of the sphere α. Further, the quasi-static conditions of
rigid body motion in a Stokes flow require that all hydrodynamic
forcings exactly balance with the external forcings.
Further details of this method are found in Ref. [19]. The result of

the calculation outlined here is a grand mobility matrix of the same
form as shown in Eq. (1) that gives the hydrodynamic coupling
between the artificial microswimmer and the spherical particle.
Since this matrix is dependent on the position and the orientation
of both bodies, in simulation, it is updated at each time step.
We consider the propulsion of a body by an externally applied

magnetic field. For this, the magnetization of the body is described
by a magnetic moment vector m, defined in a body-fixed frame of
reference and thus assumed to remain constant. The externally
applied torque acting on the body of the artificial swimmer is
then given by Te

s = (R⊤⊤⊤⊤⊤ m) × B, where B is the applied magnetic
field in the spatially fixed frame of reference and R⊤⊤⊤⊤⊤ is the rotation
transformation from the body-fixed frame to the spatially fixed
frame. The torque Te

s is the only external actuation imparted to
the system, as no forces are applied and the spherical particle is
not magnetized, so it is unaffected by the magnetic field.
Since the dynamics are dependent on the body orientation

relative to the spatially fixed reference frame, it is necessary to
parameterize this orientation of the body. For this, we adopt the

standard ZXZ Euler angles [21], and the transformation R from
the spatially fixed frame to the body-fixed frame is given by
R = Rz(psi)Rx(θ)Rz(ϕ), where Rx and Rz are the matrices repre-
senting the rotation by the given angles about the x and z axes,
respectively, of the body-fixed frame. Since these matrices are
orthogonal, the inverse transformation from the body-fixed frame
to the spatially fixed frame is given by R−1 = R⊤⊤⊤⊤⊤, where the super-
script ⊤⊤⊤⊤⊤ indicates matrix transposition.

2.1 Control System Formulation. Considering the grand
mobility formulation along with the necessary rigid body con-
straints and kinematics, we have defined a nonlinear dynamical
control system of the form

dξ
dt

= f(ξ, υ) (2)

where the state vector is ξ ≜
(
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. Here, the

vectors X represent the respective positions of the artificial
swimmer and the passive particle and the vectors Θ are vector rep-
resentations of the ZXZ Euler angles, all defined relative to a spa-
tially fixed frame of reference.
It has been previously shown both experimentally and theoreti-

cally that propulsion of the artificial swimmer can be achieved by
applying a magnetic field that rotates steadily in the spatially
fixed frame. This form of input results in a translational motion of
the swimmer along the axis of rotation of the magnetic field for
some range of rotation frequencies. In this work, we seek to show
that the swimmer and the passive particle can be steered along
any arbitrary direction. So, we take the applied magnetic field to
be of the form

B(t) = Rl(γ) · B · cosωt, sinωt, 0( )⊤⊤⊤⊤⊤ (3)

where the matrix Rl(γ) is a rotation about an axis l by an angle γ and
ω is the frequency of rotations. Without loss of generality, in this
paper, we consider only the case where the axis l is chosen to be
the spatially fixed y-axis. This allows the magnetic field to be
directed along any vector in the xz-plane. With this, the control
inputs are taken to be υ ≜ (γ, ω)⊤⊤⊤⊤⊤.

3 Simulation Results
With the particle dynamics well defined and the control system

formulated, we are able to simulate the dynamics of the

(a) (b)

Fig. 1 (a) Three-sphere artificial microswimmer considered in this work, shown in the
axes of the body-fixed frame of reference and (b) dependence of swimmer propulsion
velocity on driving frequency ω of the rotating magnetic field.
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swimmer–particle system. Starting from an initial state, the dynam-
ics are integrated forward in time using MATLAB’s built-in variable-
order differential equation solver, ODE113.
The numerical values of the parameters used for the simulations

shown in this work are outlined as follows. The magnetic moment
vector is defined in the body-fixed frame of reference as m =
m (0,



2

√
2 ,



2

√
2 )⊤⊤⊤⊤⊤ with a magnitude m= 4.0 × 10−15 N m/T. The

strength of the magnetic field is held constant at B= 5.0 × 10−3 T.
The artificial microswimmer is composed of rigidly linked magnetic
spheres of radius a= 2.25 μm, with an internal bend angle of
90 deg. Passive spheres considered in these simulations are also
of radius a= 2.25 μm. These numerical values are chosen based
on the values reported in the experimental works on this subject,
specifically Ref. [5].
Before considering the dynamics of swimmer–particle interac-

tion, we briefly explain the dynamics of a single swimmer, pro-
pelled by a rotating magnetic field. It is a well-known result that
magnetically actuated artificial swimmers only exhibit meaningful
locomotion for a certain range of driving frequencies of the oscillat-
ing field [22–24]. Specifically, there exist three distinct frequency-
dependent motion regimes. At low frequencies, the magnetic
moment vector tends to follow the magnetic field, resulting in a
tumbling motion of the swimmer, in which the body rotates in
place but experiences very little net propulsion. At slightly larger
frequencies, the swimmer begins to exhibit propulsion by precess-
ing about an axis. Finally, there exists a second critical frequency
beyond which the magnetic moment vector of the swimmer is
unable to follow the rotating magnetic field. This critical frequency
is commonly known as the step-out frequency. In this regime,
swimmer propulsion falls off rapidly and the swimmer dynamics
become difficult to predict or control. The dependence of the
swimmer velocity on the driving frequency is illustrated in
Fig. 1(b). These distinct regimes have been shown previously for
different body geometries, both experimentally and theoretically,
in many works (see, for example, Refs. [15,22]).
We will show that while the swimmer does not exhibit meaning-

ful propulsion in the tumbling regime, the rotation of the body as the
magnetic moment vector follows the magnetic field generates a
rotating fluid velocity field that is useful for stirring the fluid and
thus manipulating passive particles. That is, by choosing a
driving frequency in the propulsion regime, the swimmer may be
relocated to a different point in the fluid. Then, the axis of rotation
may be chosen, with a driving frequency below the first critical fre-
quency, so that the swimmer manipulates the fluid in a desired way,
without much motion of the swimmer itself. It should be noted that
the values of the critical driving frequencies separating the different
motion regimes depend on the body geometry, magnetization, and
the strength of the applied field [15]. For the parameter values as
given earlier, the values of these two critical frequencies were
numerically found to be approximately ω1 = 1.55Hz and
ω2 = 2.38Hz.

4 Particle Manipulation
4.1 Particle Dynamics in the Propulsion Regime. With this

understanding of the swimmer dynamics, we now examine the
system with a passive spherical particle initially located at the
origin, with the artificial swimmer located at an initial position
Xs = (8a, 0, 0)⊤⊤⊤⊤⊤. The swimmer is then driven by an oscillating
magnetic field of the form of Eq. (3), with γ = 0 and ω = 2.0Hz
over a time span from 0 to 50 s. The resulting swimmer and particle
trajectory of this simulation are shown in Figs. 2(a) and 2(b).
From these trajectories, it can be seen that the swimmer’s rota-

tional motion causes it to translate in the positive z-direction. Fur-
thermore, the rotational velocity field produced by the swimmer
causes the passive spherical particle to move in a circular path
about the swimmer in the plane orthogonal to the direction of rota-
tion and swimmer motion, with very little motion out of that plane.
For this reason, the swimmer tends to move away from the passive

particle, and thus, the fluid velocity field produced by the swimmer
tends to decay in the vicinity of the particle. This effect is illustrated
in Figs. 2(c) and 2(d ). Figure 2(c) shows that as time progresses, the
distance between the swimmer and the sphere grows larger, as the
swimmer moves out of the xy-plane. Figure 2(d ) shows the compo-
nents of particle velocity throughout the simulation. From this, we
see that the z-component of the particle velocity oscillates about
zero for the entirety of the simulation, while the x and y components
tend toward zero as the swimmer moves away from the particle. For
this reason, it becomes difficult to generate significant particle
motion with a swimmer operating in this regime, as the swimmer
will typically tend to move away from the particle.

4.2 Particle Dynamics in the Tumbling Regime. Seeing that
the swimmer tends to move away from the passive particle when
operating at a frequency in the propulsive regime motivates us to
examine the motion of a particle as the swimmer is driven by a mag-
netic field rotating at a frequency below the first critical frequency. In
this regime, themagneticmoment vector of the swimmer still tends to
follow the rotating magnetic field, resulting in a rotating motion of
the swimmer body. However, this motion is not enough to provide
the body with a net translation, so the swimmer tends to rotate, or
tumble, in place without much net motion.
To contrast the tumbling/spinning motion of the microswimmer

with the translational motion, a simulation is done with the same
initial condition as in the simulation described in Sec. 4.1, still
with a magnetic field angle of γ = 0, but with a driving frequency
of ω = 1.0Hz. This falls in the tumbling regime, as shown in
Fig. 1(b). The resulting trajectories over a 50-s simulation with
this input are shown in Figs. 3(a) and 3(b). The corresponding dis-
tance between the particle and the swimmer is plotted and shown in
Fig. 3(d ).
From the trajectory, it can be seen that the swimmer rotates nearly

in place, with only a small amount of translation out of the xz-plane.
The rotational motion of the artificial swimmer’s body generates a
rotational velocity field in the fluid that is similar to that generated
by a rotlet. This rotational velocity of the fluid causes the passive
spherical particle to translate in the xy-plane. Comparing the trajec-
tory in Fig. 2 to the trajectory of Fig. 3, it can be seen that the sphere
travels farther along its circular arc for the case of the swimmer in

(a) (b)

(c) (d )

Fig. 2 (a) and (b) Trajectories of the microswimmer and passive
particle when driven at γ=0 andω=2.0Hz, which falls in the pro-
pulsion regime. Distances shown are given in μm. (c) Distance
between the swimmer and the particle as a function of time.
(d) Components of the particle’s velocity, represented in the spa-
tially fixed frame of reference.
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the tumbling regime. The reason behind this is as follows. When the
swimmer and the particle lie in the same plane (the xy-plane here),
the sphere’s velocity is higher when the swimmer moves in the pro-
pulsive regime than when it moves in the tumbling regime. When
the swimmer moves in the propulsive regime, it tends to translate
out of this plane and away from the particle, whereas in the tum-
bling regime, the swimmer stays near to this plane throughout the
simulation. For this reason, the velocity of the sphere does not
decay nearly as rapidly in the tumbling case, as the distance
between the particle and the sphere grows much more slowly.
Both of these findings can be observed in Figs. 3(c) and 3(d ).

4.3 Control by Piecewise Steady Inputs. In the previous two
simulations shown, neither of the applied inputs resulted in consis-
tent, significant propulsion for both the passive particle and the arti-
ficial swimmer. When the swimmer is driven in the tumbling
regime, the particle exhibits significant motion, moving in a circular
arc about the swimmer. However, not much net translation is
achieved, as the particle tends to return to its original position. In
the propulsive regime, the swimmer exhibits significant propulsion,
translating in the direction of magnetic field rotation, but it tends to
move away from the particle, resulting in small particle displace-
ment. With this in mind, we seek to consider a sequence of
driving frequencies ω and directions γ to steer both the swimmer
and the particle in a desired direction.
To accomplish this, the task is broken into phases in which the

swimmer is to be moved and phases in which the passive particle
is to be moved. To move the swimmer, the magnetic field’s axis
of rotation is oriented along the desired direction and a field rotation
frequency should be chosen below the step-out frequency, but
above the tumbling-propulsion transition frequency. To move the
passive particle, the magnetic field is oriented in a direction perpen-
dicular to the desired direction of motion, and a frequency is chosen
to place the swimmer in the tumbling regime. To illustrate this, we
simulate the system with a passive particle initially located at the
origin and the artificial swimmer initially located at the position
Xs = (0, −10a, 0)⊤⊤⊤⊤⊤. With this, we choose a sequence of inputs γ
and ω in a piecewise constant manner with the goal of steering
the swimmer in the positive z direction of the spatially fixed refer-
ence frame. More specifically, for one interval of time, we choose

an input of ω = 1Hz so that the swimmer will undergo negligible
translational motion and γ = π/2 rad, so that the magnetic field
axis of rotation is aligned with the positive x-direction of the spa-
tially fixed frame. This rotation causes the particle to move in a cir-
cular arc about the swimmer in the yz-plane. This motion is then
halted before the sphere reaches the top of this circle and begins
to undergo motion in the negative z-direction. Once this motion
has been completed, a new control input is selected and held cons-
tant over a time interval, this time chosen with the objective of
moving the swimmer in the positive z-direction. For this, the
inputs ω = 2Hz and γ = 0 rad are chosen, so that the artificial
swimmer moves in the propulsive regime along an axis oriented
in the positive z-direction. This motion is carried out until the arti-
ficial swimmer moves past the spherical particle in the positive z
direction, but not so long that the particle lies outside of the range
of influence of the artificial swimmer’s velocity field. At the com-
pletion of these two time intervals, both the swimmer and the par-
ticle will have achieved a net translation in the positive z
direction. This cycle can thus be applied iteratively to achieve a
larger net displacement. A trajectory resulting from such an input
is generated and shown in Fig. 4. The inputs γ and ω applied here
are as described earlier and as displayed in Figs. 4(c) and 4(d ).
Here, the lengths of time intervals are chosen somewhat arbitrarily
and differ in order to illustrate differences in the resulting motions.
This simulation shows that translation of both the particle and the

artificial swimmer in the positive z-direction can be achieved using
the sequence of inputs as described earlier. This is emphasized in
Fig. 4(e), which shows the z position of both bodies as a function
of time throughout the simulation. This demonstrates precisely
how each of the control inputs leads to a translation of the

(a) (b)

(c) (d )

(e) (f )

Fig. 4 (a) and (b) Trajectories of the magnetically driven
swimmer and passive spherical particle in response to a
control input that switches between piecewise constants, as
described in Sec. 4.3. Distances shown are given in μm. (c) and
(d) Control inputs γ and ω. (e) Position in the z-direction of the
swimmer and the particle respectively over time. (f) Distance Dz
from the desired direction of swimmer motion.

(a) (b)

(c) (d)

Fig. 3 (a) and (b) Trajectories of the microswimmer and passive
particle when driven at γ=0 and ω= 1.0Hz, which falls in the
tumbling regime. Distances shown are given in μm. (c) Distance
between the swimmer and the particle as a function of time.
(d) Components of the spherical particle’s velocity, represented
in the spatially fixed frame of reference.
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swimmer or the sphere. Furthermore, since the choice of translation
in the z-direction was arbitrary in this simulation, this indicates that
motion of these bodies may be achieved in any direction by using a
comparable algorithm.
While this simulation clearly demonstrates that the particle and

the swimmer may be moved together, it also shows that the distance
between the particle and the swimmer’s axis of rotation may be
changed. That is, there exists a sequence of inputs that allows the
particle to be driven radially inward or outward from the
swimmer. This can be seen by examining the distance of the particle
from the axis representing the desired propulsion direction. Here,
we denote this distance by Dz and show it in Fig. 4( f ) as a function
of time. While the trajectories in Figs. 2 and 3 show that this
in-plane distance typically remains constant for a constant input,
we have shown that by combining these inputs in a piecewise cons-
tant manner, this radial distance can be reduced. Further, due to the
linearity and time reversibility of low Reynolds number locomo-
tion, this indicates that the radial distance may also be enlarged
by applying the time-reversed version of this input.

5 Conclusion
Artificial microswimmers have many potential applications in the

biomedical field. Magnetically driven microswimmers are of partic-
ular interest, as they present the capability of being controlled
remotely. In this work, we examine how a magnetically actuated
artificial microswimmer may be used to contactlessly manipulate
a passive spherical particle with a size quantified on a comparable
length scale. We have outlined an algorithm for controlling the
motion of the passive particle by adjusting the orientation and fre-
quency of the magnetic field’s rotation. It has been shown that
motion of both the swimmer and the a passive spherical particle
may be achieved in an arbitrary direction through a sequence of
magnetic field inputs in which the direction and frequency are
held constant for fixed intervals of time. Our simulations also
show that the particle may be driven radially inward or outward
from the artificial swimmer through certain sequences of inputs.
These results imply that such a swimmer and particle may be
driven to any arbitrary position and configuration using the
methods proposed herein. Therefore, these results imply controlla-
bility of the system and thus may be extended and implemented to
achieve more complex path planning goals. While in the past the
controllability of idealized systems of singularities was investi-
gated, for instance, in Refs. [25–27], this paper is one of the first
to investigate the controllability of the interaction of a cargo particle
via the locomotion of a realistic artificial microswimmer.
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