
Terrain parameter estimation from proprioceptive sensing of the
suspension dynamics in off-road vehicles

Jake Buzhardt Phanindra Tallapragada

Abstract— Off-road vehicle movement has to contend with
uneven and uncertain terrain which present challenges to path
planning and motion control for both manned and unmanned
ground vehicles. Knowledge of terrain properties can allow a
vehicle to adapt its control and motion planning algorithms.
Terrain properties, however, can change on time scales of
days or even hours, necessitating their online estimation. The
kinematics and, in particular the oscillations experienced by
an off-road vehicle carry a signature of the terrain properties.
These terrain properties can thus be estimated from propri-
oceptive sensing of the vehicle dynamics with an appropriate
model and estimation algorithm. In this paper, we show that
knowledge of the vertical dynamics of a vehicle due to its
suspension can enable faster and more accurate estimation
of terrain parameters. The paper considers a five degree of
freedom model that combines the well known half-car and
bicycle models. We show through simulation that the sinkage
exponent, a parameter that can significantly influence the wheel
forces from the terrain and thus greatly impact the vehicle
trajectory, can be estimated from measurements of the vehicle’s
linear acceleration and rotational velocity, which can be readily
obtained from an on board IMU. We show that modelling the
vertical vehicle dynamics can lead to significant improvement
in both the estimation of terrain parameters and the prediction
of the vehicle trajectory.

I. INTRODUCTION

In many military applications, unmanned ground vehicles
(UGVs) must navigate smoothly and efficiently over uneven,
deformable terrain. In such environments, unknown terrain
properties greatly impact the vehicle’s ability to track desired
velocities or reference paths [1]–[3]. Thus, it is necessary to
consider the uncertainties in terrain properties in the planning
and formulation of a control sequence to accomplish a
desired task. While some nominal knowledge of terrain
properties in an area can be known, terrain properties can
change dramatically in a few days or even hours due to
rain or snow and so the parameters of the terrain-vehicle
interaction have to be estimated online.

In this paper, we show that by considering the vertical
dynamics of the vehicle which have been neglected in
previous works, we can gain a more complete understanding
of the vehicle’s motion and interaction with the terrain.
We extend previous efforts at online estimation of terrain
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parameters such as in [2], [4], [5], by investigating the
effects of varying terrain elevation, oscillations of the vehicle
chassis, and forces within the vehicle suspension. To this
end, we develop a model that combines the classic half-car
suspension model and the dynamic bicycle model.

To model the interaction of the tire with the soil, we
use a Bekker-based wheel-soil interaction, or terramechanics,
model as proposed in [2], [6], [7]. This model considers
deformation of the terrain surface and approximates the stress
distributions in the wheel-soil contact region to predict the
normal force and resistive forces on the wheel, which can
be coupled into the vehicle dynamics model. We show that
small differences in the terrain parameters lead to significant
differences in these forces, which in turn affect the trajec-
tories of the vehicle states, especially the oscillations of the
suspension and the vehicle body. This contrast due to the
terrain parameters can be exploited in order to estimate the
parameters of the nonlinear terrain interaction model using
an unscented Kalman filter (UKF).

Previous works have also considered estimating parame-
ters of the vehicle or terrain interaction model, but usually
consider simpler models of the terrain or the vehicle. In [2],
it was shown that parameters of the Bekker model can be
estimated using a UKF, but the only vehicle model consid-
ered there was a dynamic bicycle with vertical dynamics
neglected and the terrain was considered level. In [5], a UKF
was also used to estimate vehicle and terrain parameters and
vertical vehicle dynamics were considered, but the terrain
was assumed to be level and non-deformable, with the terrain
interaction being modelled by Pacejka’s ‘magic formula’
with unknown parameters. In [8], it was shown that variations
in the terrain, specifically in the parameters of the Bekker
model, can lead to significant variations in the vertical
vehicle dynamics as the vehicle traverses an uneven terrain.
Here, we seek to exploit these differences to gain a better
understanding of the vehicle-terrain interaction by modeling
these vertical dynamics and estimating the unknown terrain
parameters using a UKF.

The results presented here have promising potential appli-
cations, extensions, and opportunities for future research. The
ability estimate unknown model parameters could allow for
the implementation of more sophisticated control strategies
for agile yet safe maneuvers by UGVs. One interesting ex-
ample of these are active suspensions, where the stiffness and
damping properties of the vehicle suspension can be varied
based on the estimated terrain parameters to better ensure
safety and allow for more efficient and agile maneuvering.
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Fig. 1: Bicycle model for longitudinal and steering dynamics

II. MODELLING

The vehicle model considered here is formulated in two
parts: a bicycle model to account for the steering and
longitudinal dynamics and a half-car model to account for
the vertical vehicle dynamics, including pitching and vertical
oscillations of the the chassis. We consider both a coupled
version of these two models as well as a simplified model
which neglects the vertical dynamics. In the coupled version
of the model, the coupling is induced through the forces
produced through wheel-terrain interactions, which are de-
pendent on the normal reaction, which varies dynamically
if the vertical vehicle dynamics are not neglected. In the
remainder of this section, these vehicle models as well as
the terramechanics model are given, and a comparison of
the models is presented.

A. Vehicle Model

1) Bicycle Model: The steering and forward dynamics of
the vehicle are modelled using a ‘bicycle model’ [9], [10],
shown in Fig. 1, which considers longitudinal, lateral, and
yaw degrees of freedom.

The equations of motion are written by summing forces
and moments in a body-fixed frame of reference, where ẋ and
ẏ are the longitudinal and lateral velocities of the vehicle’s
center of mass in the body-fixed frame, and ψ̇ is the yaw
rate, as shown in Fig. 1:

mẍ = m(ẏψ̇ cos θ + żθ̇) + Fxf + Fxr + Fu (1)

= m(ẏψ̇ cos θ + żθ̇) + Flf cos δ − Fcf sin δ + Flr + Fu

mÿ = m(żψ̇ sin θ − ẋψ̇ cos θ) + Fyf + Fyr (2)

= m(żψ̇ sin θ − ẋψ̇ cos θ) + Flf sin δ + Fcf cos δ + Fcr

Izψ̈ = Fyf lf − Fyrlr (3)
= (Flf sin δ + Fcf cos δ)lf − Fcrlr

These equations are also dependent upon the steering angle
δ, which is assumed to be commanded instantaneously; the
vehicle mass m and yaw moment of inertia Iz; the distances
from the wheels to the center of gravity lf and lr; and
the wheel forces Flf , Fcf , Flr, Fcr, and Fu. Following
[10], here the subscripts (·)f and (·)r indicate the front
and rear wheel, respectively, while the subscripts (·)l and
(·)c represent longitudinal and cornering (lateral) directions
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Fig. 2: Schematic of half-car model for vertical dynamics

relative to the wheel (e.g. Flf is the longitudinal force at
the front wheel). These tire forces are given by the Bekker
deformable terrain model, explained in Section II-B. Fu is
an additional forcing applied for actuation of the vehicle.

Equations (1)-(3) can be integrated to obtain the velocity
of the center of mass, which it is convenient to represent in
terms of the global reference frame, denoted by X-Y .

Ẋ = ẋ cosψ − ẏ sinψ (4)

Ẏ = ẋ sinψ + ẏ cosψ (5)

In simulating this bicycle model throughout the rest of this
paper, the state vector is taken to be

[
X,Y, ψ, ẋ, ẏ, ψ̇

]ᵀ
.

2) Half Car Model: The vertical and pitching dynamics
of the vehicle are modelled using a ‘half-car’ model [9],
shown in Fig. 2, which considers the stiffness and damping
of the front and rear suspensions of a vehicle traversing over
uneven terrain.

The equations of motion for the half-car are derived by
summing forces and moments in the vertical frame, where
the coordinates considered are the pitch angle θ and the
vertical displacement z of the center of mass of the vehicle,
measured from static equilibrium.

mz̈ = − kr(zr − zrg)− cr(żr − żrg) (6)
− kf (zf − zfg)− cf (żf − żfg)

Iy θ̈ =
(
kr(zr − zrg)lr + cr(żr − żrg)lr (7)

− kf (zf − zfg)lf − cf (żf − żfg)lf
)
cos θ

The vehicle parameters introduced here are the stiffnesses k
and damping constants c at the front and rear suspensions
and the pitching moment of inertia Iy . The intermediate
measurements zf and zr are the vertical translations at the
front and rear axles, which are given by

zf = z + lf sin θ and zr = z − lr sin θ

The variables zfg and zrg represent the vertical displace-
ments of the ground from static equilibrium at the front
and rear wheels. These are found from the terrain elevation
profile and the sinkage of the wheel into the deformable
terrain as zg = H(X,Y )− hf . The terrain elevation profile
H(X,Y ) is taken to be a smooth, continuous, known func-
tion of the global coordinates, and the computation procedure
for the sinkage of the wheel, hf is discussed in Section II-B.
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Fig. 3: Schematic for model of wheel-terrain interaction

In order to compute the forces from the Bekker terrain
interaction model, the normal reaction at each of the wheels
must also be known. Assuming that each wheel remains in
contact with the ground (z̈g = Ḧ), the dynamic normal
reaction is calculated as

N =
1

2
mg − k(z − zg)− c(ż − żg) +mwḦ (8)

where the front and rear wheel subscripts are included as
appropriate, and mw is the mass of the wheel.

B. Terrain Interaction

In order to compute the forces Fl and Fc at the wheel
resulting from the terrain interactions, a Bekker-based ter-
ramechanics model is implemented. With such, the forces
are computed by integrating the normal and shear stress
distributions over the contact region between the wheel and
terrain. The normal and shear stress distributions σ, τx, and
τy are taken to be functions of the sinkage h, which, in turn,
is assumed to be a function of the contact angle ϑ. These
are given by

σ(ϑ) =

(
kc
b

+ kφ

)
h(ϑ)n (9)

τx(ϑ) = (c+ σ(ϑ) tanφ)
(
1− e−jx/kx

)
(10)

τy(ϑ) = (c+ σ(ϑ) tanφ)
(
1− e−jy/ky

)
(11)

where kc, kφ, and n are terrain parameters, b is the effective
width of the wheel, and the sinkage h is given as follows.

h(ϑ) =

{
r (cosϑ− cosϑf ) ϑm ≤ ϑ ≤ ϑf
r (cosϑe − cosϑf ) ϑr ≤ ϑ ≤ ϑm

Here ϑf and ϑr are the front and rear contact angles as
depicted in Fig. 3, and ϑm is the angle of maximum normal
stress. These computed as

ϑf = cos−1
(
1− hf

r

)
(12)

ϑm = (a0 + a1s)ϑf (13)

ϑr = (b0 + b1s)ϑf (14)

ϑe = ϑf −
(
ϑ− ϑr
ϑm − ϑr

)
(ϑf − ϑm) (15)

where a0, a1, b0, b1 are soil-dependent parameters. For
the shear stresses τx(ϑ) and τy(ϑ), the shear displacements
jx(ϑ) and jy(ϑ) are also needed. These are given by

jx(ϑ) = r
[
(ϑf − ϑ)− (1− s)(sinϑf − sinϑ)

]
(16)

jy(ϑ) = r(1− s)(ϑf − ϑ) · tanβ (17)

where s = (rω − vl)/rω is the slip ratio and β =
tan−1(vc/vl) is the side-slip angle, which can be represented
in terms of the vehicle velocities ẋ, ẏ, ψ̇ and steering angle
δ as

tanβf =
(ẏ + lf ψ̇) cos δ − ẋ sin δ
(ẏ + lf ψ̇) sin δ + ẋ cos δ

tanβr =
(ẏ − lrψ̇)

ẋ

for the front and rear wheels respectively. Since wheel
rotation ω is not tracked as a state in our simulations, the
slip ratio s is assumed to maintain a constant value.

With this, σ(ϑ), τx(ϑ), and τy(ϑ) are fully defined with the
exception of the maximum sinkage hf . These distributions
can then be integrated to yield the forces on the wheel as

Fx =

∫ ϑf

ϑr

rb (τx(ϑ) cosϑ− σ(ϑ) sinϑ) dϑ (18)

Fy = −
∫ ϑf

ϑr

rbτy(ϑ)dϑ (19)

Fz =

∫ ϑf

ϑr

rb (τx(ϑ) sinϑ+ σ(ϑ) cosϑ) dϑ (20)

Finally, the maximum sinkage hf can be found by applying
the boundary condition that the resultant force in the vertical
direction is equal to the normal reaction. In this work, hf is
found using Eq. 20 as the zero of the expression Fz−N = 0
through a Newton-Raphson iterative procedure. Once hf is
found, the stress distributions are fully defined and Eqs. 18-
19 can be used to compute the tractive and lateral forces on
the wheel.

C. Vehicle Model Comparison

In order to compare the bicycle model (Eqs.(1-3)) to
the half-car model (Eqs. (1-3,6-7)), we examine the force
outputs from the Bekker-model for each model and the
corresponding effect on the vehicle trajectory. As mentioned
in Section II, the coupling between the vertical dynamics
and dynamics of the bicycle model in the half-car model is
through the dependence of the tractive and cornering forces
on the normal reaction, which dynamically varies due to
the displacement of the sprung mass of the half-car. In the
bicycle model alone, these vertical dynamics are neglected
and the normal force used to compute the wheel forces is
simply the static normal reaction. If the vehicle is traversing
level ground, these two models yield the same result, as the
sprung mass will not be displaced. But in many applications,
it is necessary for a vehicle to traverse an uneven terrain, in
which case the normal reaction will vary, which can lead to
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Fig. 4: Comparison of the (a) force outputs at the wheel from the Bekker model (b) terrain roughness H(X,Y ), suspension
and pitch kinematics and (c) the corresponding spatial trajectories of the half-car model and bicycle model. Subfigure (d)
gives a comparison of spatial trajectories with varying sinkage exponent, n.

significantly different trajectories. To see this, we consider a
terrain elevation profile specified by the following function
in terms of the global position coordinates

H(X,Y ) = H0 sin
2(0.5X) cos(1.5Y ) (21)

with H0 = 0.05 and where the output of this function is
the terrain elevation in meters. For the Bekker model, we
use the terrain parameters corresponding to clay [6]. For the
purpose of this simulation, we apply a sinusoidal longitudinal
forcing Fu(t) = m(0.8 + 0.5 sin 0.8t) and steering angle
δ(t) = 0.3 sin(0.1t).

This simulation demonstrates the effect of the vertical
vehicle dynamics on the forces at the wheel due to the terrain
interaction and, in turn, on the vehicle trajectory. Fig. 4a
shows normal forces along with the resulting tractive and
cornering forces at each wheel for a 50s simulation. As
expected, the normal reaction is held constant throughout the
simulation for the bicycle model, but for the half-car model,
the normal reaction varies with displacements of the sprung
mass due to changes in the terrain elevation. This leads to
smooth, slowly changing wheel forces at each wheel for the
bicycle model, but more rapid oscillations in the tractive
forces in the half-car model. Fig. 4b shows the vertical
dynamics from the simulation, which lead to the discrepancy,
as they are neglected in the bicycle model. The impact of this
on the spatial trajectory of the vehicle in the XY frame is
shown in Fig. 4c . We see that the error due to the differences
in the forcings accumulates over time, leading to differences
of as much as 15m between the predicted trajectory from the
bicycle model and from the half-car model.

Furthermore, this simulation framework also allows us
to consider the sensitivity of the vehicle’s dynamics to the
terrain parameters. It has been shown [2], that the sinkage

exponent n has the most significant impact of all of the
terrain parameters on the output of the Bekker model. Using
the same prescribed trajectories of steering and longitudinal
velocities, and the terrain parameters corresponding to clay,
as before, we run simulations of the vehicle motion over the
uneven using the coupled half-car model with different sink-
age exponents. The trajectories shown in Fig. 4d correspond
to sinkage exponents ranging from 0.4 to 0.6 (held constant
during each individual simulation).

These results motivate two lines of research. Fig. 4 shows
that it is important in at least some cases to consider the verti-
cal dynamics, as neglecting them can lead to a miscalculation
of the forces at the wheel, which can lead to accumulation
of error in the predicted vehicle trajectory. Fig. 4d shows
that it is crucial to have good estimates of the deformable
terrain parameters, especially the sinkage exponent, in order
to perform common control tasks, such as tracking a desired
trajectory. These sorts of error build-ups also could become
significant in predictive control frameworks, which rely on
accurate predictions from the model in order to formulate
optimal control strategies.

III. PARAMETER ESTIMATION FORMULATION

Motivated by the results of Section II-C, we now seek to
implement a parameter estimation strategy, as it is clear that
good estimates of the terrain parameters should enable better
predictions of the vehicle motion on the deformable terrain.
For this, we implement an UKF [11]–[13] in a formulation
specifically tailored to parameter estimation, as shown in [14]
and outlined briefly below.

For the parameter estimation problem, we model the
dynamics of the unknown parameters as a stationary process
driven by Gaussian noise and define a new discrete-time state



space representation

wk+1 = wk + nk (22)
dk = f(ξk, wk) + ek (23)

where w represents a vector of unknown parameters; f(·)
is a nonlinear mapping of states, ξ and parameters to an
observation vector d; and nk and ek are Gaussian process
and observation noises, respectively.

The filter is initialized with an initial estimate of the
parameters ŵ0 and the parameter covariance Pw0

. At each
time step k, the a priori estimate of the parameter mean and
covariance are updated as

ŵ−k = ŵk−1 (24)
P−wk

= Pwk−1
+Rn. (25)

With this, a set of 2L+1 sigma points are distributed about
the current parameter estimate as

Wk|k−1 =

[
ŵ−k , ŵ−k ±

√
(L+ λ)P−wk

]
(26)

where L is the length of the parameter vector and λ =
α2(L + κ) − L where α and κ are scaling parameters to
adjust the distribution of sigma points [14]. Each of the sigma
points are then used to propagate the observation model
forward

Dk|k−1 = f(ξk,Wk|k−1) (27)

and the results are used to compute an a priori observation
as a weighted sum of the predicted observations from the
sigma points.

d̂−k =

2L∑
i=0

a
(m)
i Di,k|k−1 (28)

The observation and observation-parameter covariances are
then updated as

Pdk = Rek +

2L∑
i=0

a
(c)
i (Di,k|k−1 − d̂−k )(Di,k|k−1 − d̂

−
k )

ᵀ

Pwkdk =

2L∑
i=0

a
(c)
i (Wi,k|k−1 − ŵ−k )(Di,k|k−1 − d̂

−
k )

ᵀ

where the weights a(m) and a(c) are

a
(m)
0 =

λ

L+ λ
, a

(c)
0 =

λ

L+ λ
− α2 + 3 ,

a
(m)
i = a

(c)
i =

1

2(L+ λ)
for i = 1, . . . , 2L

and with this, the Kalman gain is

Kk = Pwk
P−1dk

. (29)

Once an observation dk is received, the a posteriori mean
and covariance of the parameters are updated as follows.

ŵk = ŵ−k +Kk(dk − d̂−k ) (30)

Pwk
= P−wk

−KkPdkK
ᵀ
k (31)

This formulation of the UKF is useful, as it separates
the state estimation problem from the parameter estimation
problem. The tunable parameters of the filter include the
sigma point scaling and weighting parameters α and κ, as
well as the covariance of the artificial process noise, Rn. The
covariance Rn determines the allowed magnitude of changes
in the parameter values at each time step. So, choosing too
large of a value can lead to instability, while choosing too
small of a value can lead to stagnation or slow convergence.
For a full derivation and discussion of the filter, the reader
is referred to Ref. [14]. For the results presented herein, κ
is set to zero and the parameters α and Rn are chosen via a
parameter sweep, with parameters selected to minimize the
mean square error in the estimate. The same set of filter
parameters are used in all of the results shown for each
respective model.

IV. RESULTS

The unscented Kalman filter for parameter estimation
shown in Section III is applied for the purpose of estimating
terrain parameters. It has been shown that, of all the terrain
parameters in the Bekker terrain interaction model, the
force outputs are most sensitive to the sinkage exponent,
n, introduced in Eq. 9 [2]. Therefore, we assume that all
other parameters are known or can be easily measured, and
focus our efforts on estimating the sinkage exponent alone.
For a ground truth simulation, we use the half-car model
described by Eqs. (1-3,6-7) with a fixed set of vehicle and
terrain parameters. The vehicle parameters are chosen to be
representative of a Polaris MRZR D2 [15] and the terrain
parameters for the Bekker model are used for clay and
sand from Ref. [6]. We compare the estimation capability of
the bicycle model (Eqs. (1-3)), which neglects the vertical
vehicle dynamics, to that of the half-car model (Eqs. (1-
3,6-7)). We consider observations of the linear accelerations
in the x, y, and z directions measured in a body-fixed
reference frame and angular velocities about the y and z
axes of the vehicle body. For the bicycle model alone, the
vertical acceleration and pitch velocity are unmodeled and
therefore unobserved in the filter. The observations from the
ground truth simulation are corrupted with Gaussian noise
with standard deviations of 0.2 m/s2 in the accelerations
and 0.0175 rad/s2 in the angular velocities before being
transmitted to the filter. The longitudinal forcing is prescribed
as Fu = m(0.8 + 0.5 sin(0.8 t)) for the simulations on clay
and Fu = m(1.8 + 0.6 sin(0.8 t)) for the simulations on
sand. The terrain elevation profile used for the estimation is
the same as in Eq. 21 and is assumed to be fully known in
the model.

We consider three different steering inputs: zero steering
(Figs. 5a, 5b), a small but rapidly oscillating steering angle
(Figs. 5c, 5d), and a wide, but slowly oscillating steering
angle (Figs. 5e, 5f). These inputs are summarized in Table
I along with the mean square error of the sinkage exponent
from its true value over a 100 second simulation. Estimation
results are also depicted in Fig. 5. We see that in each of
the cases considered, the estimation results using the half-
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Fig. 5: Estimation results for the sinkage exponent, n using
the Bicycle model and Half-car model. The initial guess for
each case was chosen as n = 1.0. The steering, soil, and error
properties associated with these simulations is summarized
in Table I.

car model, both in terms of the mean-square error, and the
speed of convergence. For the case of zero steering shown
in Figs. 5a and 5b, neither estimator converges to the true
value of n on the terrain with elevation H0 = 0.05 m. This is
likely due to the fact that no lateral forcings are induced, and
thus the parameters must be estimated from the longitudinal
and vertical dynamics alone. However, we see that on terrain
with elevation H0 = 0.01 m, the half-car estimator converges
quite closely to the true value, while there is significant error
in the bicycle model’s estimate. This indicates that in some
cases, the vertical and longitudinal dynamics are sufficient

TABLE I: Terrain, steering, forcing, and estimation error
corresponding to the plots in Fig. 5.

Mean Square Error
Fig. Soil H0 [m] Steering, δ(t) [rad] Half-Car Bicycle

5a Clay 0.05 0 3.47e-2 1.26e-1
5a Clay 0.01 0 1.08e-2 9.81e-2
5c Clay 0.05 0.2 sin(t) 3.04e-3 2.02e-2
5e Clay 0.05 0.5 sin(0.3 t) 4.26e-3 5.78e-2

5b Sand 0.05 0 5.26e-2 1.55e-1
5b Sand 0.01 0 1.66e-3 1.97e-1
5d Sand 0.05 0.2 sin(t) 9.13e-4 3.53e-3
5f Sand 0.05 0.5 sin(0.3 t) 3.16e-3 7.11e-3

to estimate the terrain parameters with the half-car model,
while the bicycle model requires some lateral dynamics for
good parameter estimation.

V. CONCLUSION

The online estimation of terrain parameters is necessary
for agile and safe driving of off-road UGVs or even manned
vehicles. This paper presents a 5-degree of freedom vehicle
model that uses proprioceptive sensing measurements and
a UKF to obtain faster and more accurate estimates of the
sinkage exponent on an uneven terrain. The possibility of fast
online estimation of terrain parameters that using better vehi-
cle dynamic models opens up the possibility for using active
suspensions and other controllers for vibration isolation for
on board cameras, online path replanning and correction and
safe and agile operation of vehicles in uncertain terrains.
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