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Dynamics of groups of magnetically driven artificial microswimmers
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Magnetically driven artificial microswimmers have the potential to revolutionize many biomedical technolo-
gies, such as minimally invasive microsurgery, microparticle manipulation, and localized drug delivery. However,
many of these applications will require the controlled dynamics of teams of these microrobots with minimal
feedback. In this work, we study the motion and fluid dynamics produced by groups of artificial microswimmers
driven by a torque induced through a uniform, rotating magnetic field. Through Stokesian dynamics simulations,
we show that the swimmer motion produces a rotational velocity field in the plane orthogonal to the direction
of the magnetic field’s rotation, which causes two interacting swimmers to move in circular trajectories in this
plane around a common center. The resulting overall motion is on a helical trajectory for the swimmers. We
compare the highly rotational velocity field of the fluid to the velocity field generated by a rotlet, the point-torque
singularity of Stokes flows, showing that this is a reasonable approximation on the time average. Finally, we study
the motion of larger groups of swimmers, and we show that these groups tend to move coherently, especially
when swimmer magnetizations are uniform. This coherence is achieved because the group center remains almost
constant in the plane orthogonal to the net motion of the swimmers. The results in the paper will prove useful
for controlling the ensemble dynamics of small collections of magnetic swimmers.
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I. INTRODUCTION

In recent years, artificial microswimmers have received
significant experimental and theoretical research attention due
to their promising potential biomedical applications, such
as targeted drug delivery and particle manipulation [1,2].
While various means of propulsion have been considered,
swimming bodies driven by externally applied magnetic fields
seem particularly promising, as they present the capability
of controlling the swimmers remotely [3]. These robots ma-
neuver through fluids at extremely small length and velocity
scales, at which the effects of viscous dissipation are dom-
inant and inertial effects are negligible. In this setting, the
typical means of large-scale propulsion are ineffective, and
propulsion mechanisms must instead rely on nonreciprocal
gaits [4]. As an example seen in nature, many bacteria achieve
self-propulsion using a rotating flagella or flagellar bundle in
the form of a helix [5,6]. Taking this as inspiration, many
helically structured artificial swimmers have been designed to
rotate due to a uniform, rotating magnetic field and achieve
propulsion in a similar manner [7–9]. Further, it has been
shown that this motion is more efficient than simply towing
an object by a magnetic-field gradient [10].

Other experimental work has developed more simplis-
tic swimmer geometries, such as groups of magnetic beads
[11–15]. These microrobots are particularly relevant due to
the ease with which they may be manufactured, but also
because the symmetric nature of the sphere lends itself in
particular to theoretical and computational modeling. In this
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work, an artificial swimmer body composed of three magnetic
spheres rigidly connected in a configuration with a 90◦ bend is
studied; this geometry is depicted in Fig. 1. This swimmer has
been of particular interest, as it is known to be one of the sim-
plest geometries that possesses the necessary asymmetry to
couple an external torque to a translational motion [16]. This
specific swimmer geometry was first proposed in the work of
Cheang et al. [12], where fabrication and simple motion con-
trol were experimentally demonstrated. Meshkati and Fu [17]
later computed the mobility matrix for this geometry using the
method of regularized Stokeslets, and they used this to predict
swimmer orientations relative to the magnetic field and to
provide comparisons to the experimental work of [12]. As part
of a more general study of achiral propellers, Morozov et al.
[18] considered the effect of geometry, magnetization, and
driving frequency on the propulsion of this swimmer body.

While this particular swimmer geometry has been exam-
ined both theoretically and experimentally, almost all effort
has been directed toward steering and propulsion of a single
swimmer body. However, if these microrobots are to be used
in practice for targeted drug delivery, it is likely that a large
number of these bodies will be required to move as a group to
deliver a payload [19,20]. The requirement for a large number
of microrobots is due to the fact that it is only possible to
load such small bodies with very small doses of therapeutic
materials. Even so, testing of these applications has shown
that relatively small proportions of the loaded quantity ac-
tually reach the target destination [20]. This is largely due
to material limitations and difficulties associated with group
control in complex environments. For these reasons, and since
manufacturing developments have led to cost-effective means
of producing large numbers of these microrobots, applications
of targeted delivery using teams or swarms of drug-carrying
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FIG. 1. Three views of the three-sphere magnetic microswim-
mer, shown in the body-fixed frame of reference. m is the magnetic
moment. α and � are the azimuthal and polar angles used to
parametrize the magnetic moment orientation.

microrobots have been proposed [2,19–26]. For such swarms
of these robots to be effectively used, it will be necessary to
develop a more thorough understanding of the hydrodynamic
effects that arise when these bodies move in groups.

Regarding the geometry composed of three spheres, in
experimental work, Cheang et al. [19] demonstrated control
of two geometrically similar but magnetically different swim-
mers using a single, uniform, rotating magnetic field. Later,
Cheang et al. [13] showed that such magnetic swimmers
composed of beads can be deployed as modular subunits,
assembling and disassembling due to magnetic interactions.
Recently, the authors showed in simulation that the three-
sphere artificial swimmer can be used to manipulate a passive
spherical particle using the velocity field generated by the
swimmer [27]. Other experimental works have also demon-
strated controlled motion of bodies composed of just two
spheres, but these works typically rely on some alternative
means of symmetry-breaking, such as motion next to a wall or
substrate [11,15], relative motion between two particles [28],
or compositional variations in the body [29].

In theoretical work, while few prior studies exist regard-
ing this particular geometry and propulsion mechanism for
multiple interacting swimmers, many previous works study
the motion of pairs or groups of biological [30–32], artificial
[33,34], or hypothetical model swimmers [35–38]. Using the
method of regularized Stokeslets, Huang and Fauci [35] and
Buchmann et al. [34] studied the velocity fields produced by
groups of interacting toroidal swimmers and helical mixers,
respectively, showing that these swimmers produce velocity
fields that lead to useful fluid motion and cooperative motion
of the swimming bodies. Similarly, in this paper, Stokesian
dynamics simulations are used to analyze the fluid velocity
field produced by groups of magnetically driven swimmers,
and to show how the resulting hydrodynamic interactions lead
to group and pairwise motions that differ from the case of an
individual swimmer.

Many of the works mentioned above consider only a very
small number (three or fewer) of these bodies. Further, most
of these works [30–32,34–38] prescribe a velocity, either of
the body or on the surface, as a means of propulsion. Keaveny
and Maxey [33] implemented the force coupling method along
with a detailed magnetic model to study the cooperative mo-
tion of stacked and side-by-side pairs of swimmers propelled
by the magnetically driven undulations of helical flagella.
Similarly, in this work, a detailed model of the propulsion
mechanism of a magnetically driven microswimmer is used by
considering a magnetic dipole that remains fixed in the coro-
tating frame of reference. With this, a comparable simulation
technique is implemented to study the motion of a different
geometry in similar pair configurations, and it is then extended
to study larger groups of swimmers. The numerical method
used here is based on the well-known Stokesian dynamics
algorithm [39,40] for simulating the motion of interacting
spherical particles in a Stokes flow. Specifically, simulations
here rely on the extended version of this algorithm given by
Swan et al. [41], which allows for the simulation of bodies
composed of spheres. This work also incorporates pairwise
magnetic interactions, and it shows that the effect of these
magnetic interactions is negligible compared to the dominant
hydrodynamic interaction.

The simulations presented herein demonstrate that teams
of magnetic swimmers propelled by periodic magnetic fields
tend to move in a coherent fashion with the group center of
the collection being nearly fixed in the plane orthogonal to the
net motion with the geometric distribution of the swimmers
not being distorted significantly. We show that this is the
result of the hydrodynamic interaction between a pair of
swimmers being very similar to the interaction of two rotlets,
or point-torque singularities of the Stokes flow. The results
in this paper are significant for the development of dynamic
models for teams of robotic swimmers that need to move in a
coordinated fashion with minimal feedback.

II. MATHEMATICAL MODEL

A. Hydrodynamic model

The motion of the artificial swimmers considered in this
work is described by very small length and velocity scales.
In such a setting, the fluid motion generated by the particles
is dominated by viscous forces, while inertial forces are
considered negligible. Therefore, the fluid dynamics are well-
described by the Stokes equations.

The linearity of the Stokes equations implies that the
velocities of a body A moving through a viscous fluid are
linearly proportional to the forces and torques acting on the
body. This is known as the mobility relationship, and it is
given here by (

VA

�A

)
=

(
K C

Cᵀ M

)(
Fe

A

Te
A

)
, (1)

where Fe
A and Te

A are the external forces and torques acting
on the body A, and VA and �A are the velocity and angular
velocity of the body. The self-mobilities K, C, and M are
3 × 3 matrices that describe the hydrodynamic effects on the
body’s motion and depend solely on the geometry of the body.
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The mobility relationship for this particular geometry of three
spheres has been derived previously in Refs. [17,18].

To define the mobility matrix for the system, the commonly
used Stokesian dynamics algorithm [39–41] is implemented.
This algorithm was derived specifically to model the motion
and hydrodynamic interaction of systems of spheres moving
in a Stokes flow. Full details of this method are given in
[39–41], but a brief overview is given here. This method
considers the disturbance fluid velocity field u(x) produced by
each sphere in the simulation as a multipole expansion about
the center of the sphere,

ui(x) = 1

8πμ

[(
1 + a2

6
∇2

)
Ji j Fj + Ri j Tj

+
(

1 + a2

10
∇2

)
Ki jk S jk + · · ·

]
. (2)

Here Ji j , Ri j , and Ki jk are the propagators associated with the
singularities of Stokes flow, the Stokeslet, rotlet, and stresslet,
respectively [40]. The coefficients Fj , Tj , and S jk correspond
to components of the force, torque, and stress acting on each
sphere. The ellipsis in Eq. (2) indicates that an infinite series
of force moments would be required to exactly represent this
disturbance velocity field [42]. Following Durlofsky et al.
[39], in this work the multipole expansion is truncated at
the order shown in Eq. (2). This expression is then used in
conjunction with the Faxén formulas for spheres to develop
the terms of a many-sphere mobility matrix. This matrix
couples the forces, torques, and stresses acting on the spheres
to the velocities and angular velocities of the spheres and the
rate of strain of the flow. Full details of this calculation, along
with expressions for the elements of this many-sphere grand
mobility matrix, are given by Durlofsky et al. [39].

While the Stokesian dynamics algorithm presented by
Durlofsky et al. [39] gives the components of the many-sphere
grand mobility matrix, we are interested in the motion of rigid
bodies composed of spheres. To condense the many-sphere
mobility matrix into a mobility matrix of the form in Eq. (1),
the constraints of rigid-body motion through a Stokes flow
must be applied. Specifically, it is required that the velocities
of each sphere (denoted by α) are related to the velocities of
the rigid body (denoted by A) by

Vα = VA + �A × rAα, (3a)

�α = �A. (3b)

Also, it is required that the forces and torques acting on the
body satisfy the quasistatic conditions of motion in a Stokes
flow,

Fe
A −

∑
α∈A

Fα = 0, (4a)

Te
A −

∑
α∈A

(rAα × Fα + Tα ) = 0. (4b)

In Eqs. (3) and (4), Fα and Tα are the forces and torques
acting on each sphere α, and rAα is the vector from a chosen
reference point on the rigid body A to the center of the
sphere α. For the computations presented herein, the center
of hydrodynamic mobility, as defined by Morozov et al. [18],
is chosen as the reference point.

B. Rigid-body dynamics

To define the rotation transformation between the body-
fixed frame and the spatially fixed frame, the orientation of
the artificial swimmer is parametrized using the ZXZ Euler
angles, where the transformation matrix from the spatial frame
to the body frame is defined as

R = Rz(ψ )Rx(θ )Rz(φ), (5)

where Rx and Rz are the matrices representing the rotation
by the given angles about the body-fixed x and z axes, re-
spectively. Since these matrices are orthogonal, the inverse
transformation from the spatial frame to the body-fixed frame
is given by R−1 = RT .

Once the angular velocities are found through the mobility
relationship, they may be related to the rates of change of
the Euler angles to determine how the orientation of the
swimming body changes due to the magnetic field. This
relationship is given by [43]

�A = RT

⎛
⎜⎝

sin ψ sin θ cos ψ 0

cos ψ sin θ − sin ψ 0

cos θ 0 1

⎞
⎟⎠

⎛
⎜⎝

φ̇

θ̇

ψ̇

⎞
⎟⎠, (6)

where the dot notation indicates the time rate of change.
This formulation allows the equations governing the mo-

tion of the swimmer to be integrated numerically by forming
the mobility matrix using the Stokesian dynamics method at
each time step, computing the torque applied to the body, and
using these to determine the velocity and the orientation rate
of change of the swimmer.

C. Magnetic actuation

The propulsion mechanism for the artificial swimmers con-
sidered here is an applied torque Te generated by a magnetic
field B. With the magnetic moment vector m defined in the
body-fixed frame of reference and assumed to be permanent,
the torque acting on the body is defined in the spatial frame as

Te = RT m × B, (7)

where B is the magnetic field defined in the spatially fixed
frame.

Here, a uniform magnetic field rotating in the xy plane
about the spatially fixed z-axis is considered as

B(t ) = B(cos ωt, sin ωt, 0)T , (8)

where B is the strength of the magnetic field and ω is the
frequency of rotation. With this, the torque acting on the
swimmer at any time may be calculated and used in conjunc-
tion with the mobility formulation in Eq. (1) to determine the
velocity of the swimmer. In general, when multiple magnetic
dipoles are present, a force will arise as a result. In this
work such magnetic interactions are neglected, as the resulting
velocities are of negligible magnitude in comparison to those
resulting from hydrodynamic interaction, as is shown in later
calculations.

With the magnetically induced torque defined, the ex-
pressions for the spatial frame translational velocity and the
orientation rate of change are fully defined. Integrating these
equations enables the study of the effect of the magnetization
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FIG. 2. Propulsion speed of the artificial swimmer as a function
of the magnetic moment direction. (a) Direction parametrized by
the spherical coordinates α and �. Parts (b) and (c) show the same
dependence plotted on the unit sphere. The black × in (a) and the red
line in (b) and (c) indicate the moment direction used in simulations
herein.

of the swimmer and the applied magnetic field on the propul-
sion of the artificial swimmer. Figure 2 shows the propulsion
velocity of the artificial swimmer as the direction of the
magnetic moment vector is varied. Here the magnetic moment
direction is parametrized using the azimuthal and polar angles
α and � as

m = m (sin � sin α, cos �, sin � cos α)T . (9)

For this study, the rotating magnetic field has a frequency
of ω = 4π rad/s and strength B = 5.0 mT and the magnetic
moment has a constant strength of m = 4 × 10−15 J/T. Based
on these simulations, a magnetic moment orientation may be
chosen to obtain a desired propulsion velocity. Specifically,
in this work, the direction given by α = 0 rad and � =
0.5052 rad is used for the remainder of the simulations shown,
unless otherwise noted. This location is denoted by the red ×
in Fig. 2(a) and the red line in Figs. 2(b) and 2(c). It should
be noted that this result depends on the driving frequency
ω chosen. As shown by Morozov et al. [18], the largest
swimmer velocities will occur at the step-out frequency for
magnetization orientations with α = 0.

In Fig. 2 and in the remainder of this paper, all numerical
results will be reported in a nondimensional form. For this,
the characteristic velocity V ∗ = mBCyz is adopted, where
Cyz = Czy is the nonzero element of the coupling matrix C.
This submatrix only possesses this symmetry in the body-
fixed frame due to the choice of the hydrodynamic center
of mobility as the reference point. The characteristic length
L∗ is chosen as the diameter of one of the magnetic spheres
composing the body, L∗ = d . With this, the characteristic

FIG. 3. Streamlines and magnitude of the disturbance fluid ve-
locity field produced by the three-sphere swimmer at steady state,
time-averaged over one period of the magnetic-field rotation.

time is chosen to be t∗ = L∗/V ∗. For the sake of readability,
no special notation will be used for these nondimensional
quantities, but all numerical values reported are normalized
by these characteristic values.

With the motion of the swimmer known from numerical
integration, the fluid velocity field produced by the swimmer
motion may be calculated from Eq. (2), where the singularity
strengths Fi, Ti, and S jk are computed from the many-sphere
grand resistance matrix. The fluid velocity field produced by
the swimmer, time-averaged over a period of the magnetic
field rotation, is shown in Fig. 3. The color represents the
magnitude of the fluid velocity in the plane shown, on a
logarithmic scale. From this figure, it can be seen that the fluid
velocity decays much more rapidly in the planes containing
the swimmer’s axis of rotation than in the plane orthogonal
to this axis. Also, the fluid motion in this orthogonal plane
is highly rotational, indicating that the rotlet term is the
dominant term in the multipole expansion of Eq. (2).

III. MULTIPLE INTERACTING SWIMMERS

A significant advantage of using the Stokesian dynamics
method is that it may easily be extended to consider many
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interacting bodies in the low Reynolds number fluid. To do
this, it is necessary to construct a many-body grand mobility
matrix, which depends on the relative positions and orienta-
tions of the bodies. For the case of n bodies, the matrix takes
the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1

...

Vn

�1

...

�n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K11 · · · K1n C11 · · · C1n

...
. . .

...
...

. . .
...

Kn1 · · · Knn Cn1 · · · Cnn

Cᵀ
11 · · · Cᵀ

1n M11 · · · M1n

...
. . .

...
...

. . .
...

Cᵀ
n1 · · · Cᵀ

nn Mn1 · · · Mnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fe
1

...

Fe
n

T e
1

...

T e
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

In simulation, this matrix is formed in a similar manner to
the single swimmer mobility matrix in Eq. (1). A many-sphere
grand mobility matrix is formed using the Stokesian dynamics
method as in Ref. [39]. From there, this many-sphere mobility
matrix is condensed to a many-body grand mobility matrix
by applying the conditions given by Eqs. (3) and (4) to each
of the bodies present in the simulation. This step implicitly
takes into account the internal constraining forces and torques
acting on the spheres, which are necessary to maintain the
rigid-body conditions. To avoid additional complexities, all
torques, forces, and velocities are considered in the spatially
fixed frame of reference. With the torques acting on each
body computed from Eq. (7) and the external forces assumed
to be zero, this many-body mobility matrix may be used to
compute the translational velocity and rotational dynamics
of each of the bodies. These velocity expressions are then
integrated numerically using MATLAB’s built-in variable order
differential equation solver ode113.

In this work, each swimmer body is approximated as a
permanent magnetic dipole, driven by a torque generated
through an externally applied magnetic field. In general, when
two magnetic dipoles are present, an interaction force will
arise between them. In the simulations shown here, these
dipole-dipole interaction forces are neglected, as the swimmer
velocities resulting from these forces are negligible relative to
those resulting from the magnetic torque due to the external
field and from hydrodynamic interaction at the swimmer
separation distances considered herein. In general, the force
resulting from the interaction between two dipoles is of mag-
nitude

Fm = μ0m1m2

4πr4
12

, (11)

where μ0 is the permeability of free space, m1, m2 are the
dipole strengths, and r12 is the magnitude of the position
vector separating the dipoles [44]. For a swimmer separation
distance of four spherical diameters, the velocity Vm resulting
from the magnetic interaction force can be shown to have
magnitude Vm/V ∗ = 8.75 × 10−4 while the velocity Vh due to
hydrodynamic interaction between the swimmers has magni-
tude Vh/V ∗ = 2.88. This separation distance is representative
of the separations considered throughout this paper, so due to

FIG. 4. Trajectory of two interacting microswimmers resulting
from a rotating magnetic field with an axis of rotation perpendicular
to the swimmer plane. Initial swimmer separation is 4 spherical
diameters. The black line indicates the path of the mean position of
the two swimmers.

this difference in magnitude we neglect the forces arising from
the dipole-dipole interaction.

Also, in order for the mobility matrix derived from the
Stokesian dynamics method to be considered exact at very
small separation distances, it is necessary to either include
an infinite number of force multipoles in the expansion of
Eq. (2) or to include the near-field lubrication interactions by
pairwise addition to the grand resistance matrix as explained
by Durlofsky et al. [39]. However, these lubrication forces
only become significant when there is relative motion between
two spheres separated by a very small distance (e.g., less than
0.05 D*) [39–41,45]. In the simulations presented here, the
spheres of each body are fixed, so there is no relative motion
between them. Further, all bodies in the simulations maintain
separations large enough that these near-field forces do not
become significant. For these reasons, lubrication forces are
not considered in the model presented here.

A. Rotation orthogonal to the swimmer plane

Here two distinct classes of the trajectories of the interact-
ing swimmers will be studied: (i) where the axis of rotation
of the magnetic field is orthogonal to the plane initially
containing the swimmers, and (ii) where the axis of rotation
of the magnetic field is aligned with the line joining the
swimmers. Figure 4 shows the resulting swimmer trajectories
associated with the first case, where the magnetic field’s axis
of rotation is orthogonal to the plane containing the two
swimmers. It can be seen that in this case, the swimmers tend
to spiral about one another while translating in the direction
of the magnetic field’s axis of rotation. A similar trajectory
was reported in the experimental work of Cheang et al. [19]
when two microswimmers passed each other swimming in
opposite directions and spiraled about one another. That work
reported that the instant of this hydrodynamic interaction
corresponds to the peak speed of the swimmers, indicating
that the effects of the hydrodynamic interaction, as seen here,
are quite significant. The swimmers shown in Fig. 4 are
initially spaced at a distance of four spherical diameters, and
this separation distance exhibits only very small oscillations
about that constant value throughout the simulation.

Figure 5 shows a comparison of the propulsion velocity of
the two interacting swimmers to the propulsion of a single
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FIG. 5. Comparison of the propulsion velocity of two interacting
swimmers to a single swimmer.

swimmer as the frequency of rotation ω of the magnetic
field is varied. For the case of a single swimmer, the propul-
sion velocity remains near zero until the rotation reaches a
critical frequency. Above this critical frequency, the veloc-
ity increases linearly with frequency until a second critical
frequency, known as the step-out frequency, is reached. Be-
yond this step-out frequency, the propulsion velocity steadily
begins to decay. This is a well-known result that has been
shown experimentally and theoretically for this geometry
and many others (see, for example, [12,18,46]). It should
be noted that this relationship only takes this specific shape
for this particular choice of the magnetic moment vector.
For other magnetic moment orientations, for example, one
with a nonzero component in the body-frame x-direction may
show a differently shaped frequency-propulsion curve. This
has been analyzed in detail by Morozov et al. [18]. For the
case of two swimmers, the propulsion velocity is not affected
greatly, aside from a few values lying very close to the step-out
frequency. However, the magnitude of the velocity increases
with the presence of a second swimmer due to the circular
motion in the xy-plane that is not seen in the case of a single
swimmer.

To understand the spiraling pattern seen in the trajectory of
the interacting swimmers, one only needs to study the fluid
velocity field produced by the swimmers. In Fig. 3, it was
shown that a single swimmer produces a velocity field that is
highly rotational in planes orthogonal to the swimmer’s axis of
rotation. Furthermore, it was shown that of planes intersecting
the swimmer, the magnitude of the fluid velocity field is much
larger in the plane orthogonal to the magnetic field’s axis of
rotation than in those containing this axis. When considering
this, it can be inferred that this rotational fluid velocity field
would tend to push a second swimmer along a trajectory that
is circular in this plane. Also, since the swimmers considered
here are of identical geometry and magnetization, it should be
expected that the trajectories of the two swimmers would be
nearly identical.

These trajectories are further explained by studying the
fluid velocity field generated by the two swimmers in the plane
orthogonal to the swimmer axes of rotation. The streamlines
and magnitude of this velocity field are shown in Fig. 6.
Again, this velocity field is time-averaged over the period of

FIG. 6. Streamlines and magnitude of fluid velocity field pro-
duced by two interacting swimmers, time averaged over a period
of the magnetic-field rotation. The velocity field shows the plane
orthogonal to the magnetic-field axis of rotation.

the magnetic field’s rotation. This time average is computed
by first integrating the swimmer velocities using the Stokesian
dynamics procedure to obtain the swimmer positions and
orientations over time. With this, the fluid velocity field is
computed as the swimmer bodies are rotated accordingly, but
with their positions remaining fixed.

It is insightful to compare the velocity field produced by
the swimmers to that of a rotlet, a point torque singularity.
The fluid velocity at a point xE produced by a rotlet located at
a point xR may be written as [42,47]

uR(xE ) = 1

8πμ

T × rEP

r3
EP

, (12)

where rEP = xE − xR, rEP = ‖rEP‖, and T is the vector giv-
ing the magnitude and direction of the point torque.

From the Stokesian dynamics approach for computing the
interactions as described above, the velocity of one of the two
swimmers is written as(

V1

�1

)
= M11

(
Fe

1

Te
1

)
+ M12

(
Fe

2

Te
2

)
, (13)

where the notation for the mobility matrix has been introduced
such that

Mi j =
(

Ki j Ci j

Cᵀ
i j Mi j

)
.

In this expression, the first term represents the hydrodynamic
self-mobility, as given in Eq. (1), and the second term takes
into account the effect of hydrodynamic interaction with
the second swimmer. To approximate the swimmer-swimmer
interactions using the rotlet velocity field, one may consider
swimmer 2 as a rotlet and evaluate the fluid velocity field at
the location of swimmer 1. That is,

VR
12 = 1

8πμ

Te
2 × r12

r3
12

. (14)
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(a)

(b)

FIG. 7. Comparison of the velocity of swimmer 1 due to hydro-
dynamic interactions with swimmer 2 as predicted using the Stoke-
sian dynamics procedure and the rotlet velocity field approximation.
(a) Direct comparison of the y-component of the swimmer velocity
between the two models. (b) Normalized error of the velocity from
the rotlet approximation.

To check the validity of this approximation, it is compared
to the interaction velocity produced by the interaction mo-
bility matrix M12, as predicted by the Stokesian dynamics
algorithm,

VSD
12 = C12Te

2. (15)

The results of this calculation are shown in Fig. 7(a) for the
swimmer configuration as shown in Fig. 6 above, where the
rightmost swimmer is denoted as swimmer 1. In this config-
uration, both swimmers lie on the x-axis, so the tendency of
swimmer 1 is to move in the positive y direction at that instant.
Figure 7(b) shows a normalized error in the rotlet calculation,
given by ‖VR

12 − VSD
12 ‖/‖VSD

12 ‖. These results indicate that the
rotlet approximation given above is a good one, even at quite
close separation distances. This is somewhat surprising when
considering that the rotlet approximation effectively neglects
the finite size of both swimmers, assuming that swimmer 2
can be represented by a single point torque and that swim-
mer 1 behaves just as a fluid particle located at its position
would.

This finding is quite useful, as it gives a very low order
approximation for the hydrodynamic interaction of two mag-
netic swimmers that allows one to qualitatively predict the

FIG. 8. Trajectory of two microswimmers resulting from a ro-
tating magnetic field with an axis of rotation aligned with the line
initially separating the swimmers. Initial swimmer separation is 6
spherical diameters.

dynamics of multiple interacting swimmers. The dynamics of
interacting rotlets are better understood [48–50] and easier to
incorporate into control models [51,52]. This could also allow
for significant computational advantage with an increasing
number, N , of swimmers since the simulation of N interacting
rotlets is significantly faster than the Stokesian dynamics
approach. Further, the qualitative understanding provided by
the rotlet approximation yields a simple explanation of the
helical trajectory of the interacting swimmers. It is well known
[48–50] that two rotlets with identical torques that are perpen-
dicular to the plane containing them tend to move in a circular
trajectory in that plane. For the swimmers considered here,
the torques are not necessarily perpendicular to the plane con-
taining them at any instant, but due to the rotational nature of
the swimmers, the components of the torque in the plane con-
taining the swimmers average to nearly zero over the time
period of the rotations. This explains the cooperative, circular
motion in the plane containing the microswimmers. As seen
in Fig. 3, the fluid velocity field decays very rapidly in the
planes containing the swimmer’s axis of rotation. Therefore,
the motion of the swimmers in the direction of rotation of
the magnetic field is negligibly different from the case of
just a single swimmer, as further evidenced by Fig. 5. Thus,
the helical trajectory of the interacting swimmers may be
thought of as the superposition of the trajectory of a single
swimmer in free space with the trajectory of a rotor interacting
cooperatively with another rotor in the plane orthogonal to the
magnetic field’s axis of rotation.

B. Rotation along the line joining the swimmers

A second significant case that must be considered in study-
ing the interactions of two of these artificial microswimmers
is the case in which the axis of rotation of the magnetic field is
aligned with the line joining the two swimmers. The resulting
trajectories for this case, as computed by integrating the
equations of motion using the Stokesian dynamics algorithm,
are shown in Fig. 8. In this case, both swimmers move in
the positive z direction, along the direction of rotation of the
magnetic field, with very little motion in the plane orthogonal
to the magnetic field’s axis of rotation.
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As before, this motion can be explained by considering the
fluid velocity field produced by each of the swimmers and
approximating it by the velocity field produced by a rotlet. For
each of the bodies, the fluid velocity field produced will again
be largely in the plane containing the swimmer and orthogonal
to the axis of rotation. However, since the swimmers are ini-
tially aligned along their direction of rotation, this plane will
not contain the second swimmer. Instead, the other swimmer
lies in a plane containing the axis of rotation, in which the fluid
velocity field was shown to decay very rapidly to negligibly
small values moving radially away from the swimmer body in
Fig. 3.

Considering this configuration in terms of the rotlet model,
the time-averaged torque is still nearly aligned with the di-
rection of rotation of the swimmer as before. Thus, the only
nonzero component of the time-averaged torque will be in the
z-direction. Further, the only nonzero component of the r12

vector will also be in the z-direction. For these reasons, at any
point lying on the axis of rotation, the velocity field produced
by the rotlet should vanish. Therefore, when averaged over
time, one can expect the influence of each swimmer on the
other to be negligible, as is indicated by the trajectories in
Fig. 8, in which the paths of the swimmers seem to differ very
little from the case of a single swimmer in free space.

This observation, along with the rotlet approximation, also
allows for a good qualitative prediction of what the motion
of more than two swimmers will look like. For these cases,
one can predict that swimmer bodies that lie in the same
plane orthogonal to the direction of rotation of the magnetic
field will tend to interact, while swimmers with significant
separation in the direction of rotation will have little influence
on one another. The groups of swimmers that experience sig-
nificant hydrodynamic interaction tend to move in trajectories
about their geometric center, though these trajectories may
be irregular or nonsymmetric depending on the initial con-
figuration. In addition to this interaction, the swimmer bodies
also experience a net motion in the direction of rotation for a
certain range of driving frequency, as shown in Fig. 5. Since
neither of these motions results in a separation of swimmers in
the group, the swimmers tend to remain together in a coherent
group, as long as their magnetizations lie within a range that
leads to propulsion in the same direction. This is demonstrated
further for larger groups of swimmers in the simulations of the
following section.

IV. LARGER GROUPS OF SWIMMERS

When considering larger groups of these swimmers in sim-
ulation, much of the dynamics can be explained by extending
the reasoning of the two cases of two swimmers detailed
above. As a first case, a uniform grid of 16 swimmers is
studied, with swimmers initially positioned in the xy-plane
at a separation distance of four spherical diameters. To start,
a group of identical microswimmers is considered; that is,
all swimmers have the same geometry and magnetic moment
orientation. As before, a uniform magnetic field will be con-
sidered to be steadily rotating in the xy plane, with its axis of
rotation aligned with the spatial frame z-direction, as given in
Eq. (8). The resulting trajectories of these bodies are shown in
Figs. 9(a) and 9(b).

)b()a(

)d()c(

FIG. 9. Simulation results for 16 identical interacting swimmers
initially placed in a plane orthogonal to the magnetic-field rotation
direction. Parts (a) and (b) give trajectories of the bodies in the
xy and xz planes. The black line indicates the path of the mean
position of the swimmers. Filled circles indicate the starting position,
while the swimmer bodies indicate the final position and orientation.
(c) Standard deviation of the position coordinates from the mean
position coordinate. (d) Distance of each swimmer from the group
center of mobility as a ratio of the initial distance from this center.

In the case of two interacting microswimmers with a mag-
netic field rotating orthogonally to the plane containing the
swimmers, it was shown that the swimmer trajectories were
not significantly altered in the direction of the magnetic-field
rotation due to the interaction. However, the trajectories in the
plane containing the swimmers varied, as the swimmers begin
to move in circular paths in this plane due to hydrodynamic
interactions. Similarly, in the case of 16 identical swimmers
initially starting in a plane orthogonal to the magnetic-field
rotation, the swimmers tend move along a spiraling trajectory
in the plane containing them, with only small displacement
from this plane throughout the motion. The trajectory plots in
Figs. 9(a) and 9(b) also depict the path of the mean position of
the swimmers’ centers of hydrodynamic mobility. This mean
position will be referred to as the group center of mobility in
the remainder of this paper. It can be seen that this path is
remarkably straight and aligned with the direction of rotation
of the magnetic field, much like what was seen in the case of
two swimmers and for a single swimmer.

The distortion of the volume occupied by the group of
swimmers can be quantified by the standard deviations of
the positions of the swimmers from the mean position of all
swimmer bodies in each of the x-, y-, and z-coordinate di-
rections. These standard deviations thus give a measure of
how much the size of the group of swimmers is expanding
and contracting in the different spatial coordinate directions.
The plot of these standard deviations over time is shown in
Fig. 9(c). From this, it is seen that there is only a small
increase in the deviations in any of the x-, y-, or z-coordinates
throughout the simulation. This shows that the swimmers tend
to move as a coherent group around the mean trajectory,
without significant distortion of the volume occupied by the

033106-8



DYNAMICS OF GROUPS OF MAGNETICALLY DRIVEN … PHYSICAL REVIEW E 100, 033106 (2019)

(a)

)c()b(

)e()d(

FIG. 10. Simulation results for 16 interacting swimmers of dif-
fering magnetic moments initially placed in a plane orthogonal to the
magnetic-field rotation direction. (a) Direction of magnetic moment
vectors with respect to the direction-parametrized propulsion speed
previously shown in Fig. 2. Parts (b) and (c) give trajectories of the
bodies in the xy and xz planes, respectively. The black line indicates
the path of the mean position of the swimmers. (d) Standard deviation
of the position coordinates from the mean position coordinate. (e)
Distance of each swimmer from the mean position as a ratio of the
initial distance from the mean.

swimmers. In Fig. 9(d), the distances of each swimmer D from
the group center of mobility are shown as a ratio of their initial
distance, D0, from the group center of mobility. From this, it
is clear that most swimmers largely rotate in groups about the
mean position of the group such that D/D0 oscillates about
one. However, a few swimmers stray from the mean, while a
few move closer to the mean. These transitions from an inner
region to the outer region and vice versa occur in such a way
that the standard deviation of the positions of the swimmers
does not change significantly.

In Fig. 10, simulation results for a similar arrangement
of swimmers are shown, but with less uniformity. While in
the first case the swimmers all possessed identical magnetic
moments, for this simulation the swimmers’ magnetic dipole
moments are nonidentical. The magnetic moments are ran-
domly (Gaussian) distributed. The polar coordinates of these
unit dipole moment vectors are shown by the red × symbols
in Fig. 10(a) overlaid on the plot of propulsion velocity so
that they all lie within a region of similar dynamics, but
with differing propulsion velocities. This case of magnetic
swimmers with nonuniform magnetic moments is often en-
countered in practice, as magnetic spheres do not necessarily

)b()a(

)d()c(

FIG. 11. Simulation results for 16 identical interacting swim-
mers initially placed in a plane containing the magnetic-field rotation
direction. Parts (a) and (b) give trajectories of the bodies in the
xy and xz planes. The black line indicates the path of the mean
position of the swimmers. Filled circles indicate the starting position,
while the swimmer bodies indicate the final position and orientation.
(c) Standard deviation of the position coordinates from the mean
position coordinate. (d) Distance of each swimmer from the mean
position as a ratio of the initial distance from the mean.

have identical magnetic moments. Furthermore, in practice
the initial locations of the swimmers are unlikely to be uni-
formly distributed. Therefore, the initial locations of each
swimmer are randomly selected (with a Gaussian distribution
with a standard deviation of one spherical diameter), with the
mean located at the respective uniform grid points.

With the introduction of this nonuniformity, significant
differences from the ideal case of identical swimmers with a
uniform initial spatial distribution are seen. First, the noniden-
tical magnetic moments produce slower propulsion speeds
for the group. Rather, the swimmers still rotate in circular
trajectories in the xy plane, but with many swimmers moving
inwards and outwards toward the center of the group, as
shown in Figs. 10(c) and 10(e). The standard deviations σx

and σy show small variations, but when σx increases, σy

decreases, indicating that the area occupied by the group of
swimmers in the xy-plane is nearly the same. The distance
ratio D/D0 for each swimmer shows larger variations, but this
ratio is bounded for each swimmer showing the coherence of
the group of swimmers. In Fig. 10 we see that the standard
deviation in the z-coordinates increases steadily, contrary to
the ideal case of identical swimmers. This is due to differing
magnetic dipole moments that produce differing propulsion
speeds among the group of swimmers leading to increased
separation in the z-direction.

As with the two-swimmer case, the motion of a group
of microswimmers when the rotation axis of the magnetic
field lies in the plane that initially contains the group of 16
swimmers is now considered. Figure 11 gives the results of
this simulation. Again, the magnetic field rotates in the z-
direction by Eq. (8) and the swimmers are placed on a uniform
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grid with initial separations of four spherical diameters, but
this time in the xz-plane. In this case, it appears that swimmers
that start at the same height in the z-direction tend to interact
as a group and travel together in a spiraling trajectory, but with
little interaction with swimmers starting higher or lower in
the grid. This aligns with the results from the previous cases
in which swimmers that lay in the same plane orthogonal
to the direction of magnetic-field rotation tended to interact,
with very little hydrodynamic interaction among swimmers
lying in different planes orthogonal to the magnetic field.
Studying the standard deviations of the swimmers from the
mean position in Fig. 11(c), it is again seen that there is little
separation in the z-direction throughout the simulation, and
little net growth in the x- or y-direction either, as they oscillate
between larger and smaller values as the swimmers complete
helical trajectories in space. In Fig. 11(d), the plot of swimmer
distance ratios D/D0 indicates that the lateral displacements
of most swimmers from the axis of net motion is small. Some
swimmers show large motion in such a lateral direction, but
while some swimmers move temporarily away from the axis
of net motion, others move toward this axis, but such that the
area enclosed by the swimmers in the xy-plane remains nearly
constant and undergoes little distortion.

In Fig. 12, a nonuniform version of the case considered in
Fig. 11 is given. Here, the swimmer locations are initialized
along a square grid with in-line separation distances of four
spherical diameters, but with an added random variation to
each coordinate of zero mean and standard deviation of one
spherical diameter. As in the case of the simulation in Fig. 10,
the magnetic moment orientations are also randomized, as
shown in Fig. 12(a). In the plot of D/D0 shown in Fig. 12(e),
it is shown that the group maintains its coherence, as this ratio
remains near unity for most of the swimmers in the group.
This is further confirmed by studying the standard deviations
of the swimmer positions from the mean position, which
shows that there is not significant growth in the deviation in
any of the coordinates, as was seen in the previous case that
included such nonuniformity.

V. CONCLUSION

In this paper, we have presented results of the effects of
hydrodynamic interactions on groups of magnetically driven
artificial microswimmers. Through Stokesian dynamics sim-
ulations, we analyzed the fluid velocity field generated by
the motion of a single swimmer, showing that it produces a
highly rotational fluid velocity field in the plane orthogonal to
the magnetic-field rotation and a much more rapidly decaying
velocity field in planes containing this axis. We show that the
rotating fluid velocity field produced is almost the same as that
of a rotlet, the point-torque singularity of Stokes flows. That
is, when this velocity field is time-averaged over the period
of magnetic-field rotations, it is almost the same as that of a
rotlet with a spin oriented in the direction of net locomotion.
We then apply this finding to develop an understanding of
pairwise swimmer motion, focusing on two configurations.
We see that while little hydrodynamic interaction takes place
when the magnetic-field rotation is directed along the line
joining the swimmers, there is significant interaction when the
rotation is orthogonal to the plane containing the swimmers.

(a)

)c()b(

)e()d(

FIG. 12. Simulation results for 16 interacting swimmers initially
placed in a plane containing the magnetic-field rotation direction.
(a) Direction of magnetic moment vectors with respect to the
direction-parametrized propulsion speed previously shown in Fig. 2.
Parts (b) and (c) give trajectories of the bodies in the xy and xz
planes. The black line indicates the path of the mean position of
the swimmers. Filled circles indicate the starting position, while the
swimmer bodies indicate the final position and orientation. (d) Stan-
dard deviation of the position coordinates from the mean position
coordinate. (e) Distance of each swimmer from the mean position as
a ratio of the initial distance from the mean.

This is explained in terms of the fluid velocity field produced
by the swimmer and the approximation of the swimmer as a
rotlet. In both cases, the distance of each swimmer from the
group center of mobility remains nearly constant. The group
center itself moves like a magnetically propelled swimmer.
We then extend this simulation to study the motion of a larger
group of 16 of these swimmers in different group configu-
rations. We show that these swimmers still tend to move as
a coherent group by studying the standard deviation of the
swimmers’ positions from the group center position, which
remain nearly constant. Further, we see that in the case of
uniform magnetizations, the group center of mobility tends to
remain constant in the plane orthogonal to the magnetic-field
rotation. We then introduce nonuniformity in the magneti-
zations and initial positions of the swimmers in the group,
and we show that this group coherence and conservation of
the mean position in the plane perpendicular to rotations is
still largely maintained for this more realistic simulation. The
results given here will be useful in developing simplified dy-
namical system models and control strategies for cooperative
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motion of small groups of these artificial microswimmers
based on spatial ensemble statistics of the group, a task that
will be necessary if this developing technology is to reach
its potential in a range of applications, such as targeted drug
delivery.
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