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Abstract— We consider the problem of the transport of a den-
sity of states from an initial state distribution to a desired final
state distribution through a dynamical system with actuation.
In particular, we consider the case where the control signal is
a function of time, but not space; that is, the same actuation
is applied at every point in the state space. This is motivated
by several problems in fluid mechanics, such as mixing and
manipulation of a collection of particles by a global control
input such as a uniform magnetic field, as well as by more
general control problems where a density function describes an
uncertainty distribution or a distribution of agents in a multi-
agent system. We formulate this problem using the generators
of the Perron-Frobenius operator associated with the drift
and control vector fields of the system. By considering finite-
dimensional approximations of these operators, the density
transport problem can be expressed as a control problem for
a bilinear system in a high-dimensional, lifted state. With this
system, we frame the density control problem as a problem of
driving moments of the density function to the moments of a
desired density function, where the moments of the density can
be expressed as an output which is linear in the lifted state. This
output tracking problem for the lifted bilinear system is then
solved using differential dynamic programming, an iterative
trajectory optimization scheme.

I. INTRODUCTION

In this paper, we consider the problem of controlled
density transport, where given an initial distribution of states
specified by a density function, we seek to determine a
control sequence to drive this initial distribution to a desired
final distribution. We consider the case where a common
control signal is applied to the entire distribution of states.
This differs from the usual formulation of swarm control
and optimal transport problems, where typically each agent
can select a control input independently, making the control
signal a function of the states and time. This problem of
density transport is motivated by problems of manipulation of
a large collection of non-interacting agents using a uniform
control signal [1]. Such problems have found applications
recently in micro-fluidics, where it has been shown that
collections of micro-particles can be manipulated through
a fluid using a uniform magnetic field for targeted drug
delivery [2] or to generate a pumping effect to transport fluid
particles [3]. Simultaneously, the transport of density has
relevance to the propagation of an uncertainty distribution
arising due to uncertainty in the initial state or of a model
parameter through an otherwise deterministic control system
(see, e.g. [4]–[6]). We formulate and solve this problem
using an operator theoretic approach, specifically using the
generator of the Perron-Frobenius operator.
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In recent years the operator theoretic approach to dy-
namical systems has gained significant research attention,
both from a dynamical systems perspective [7], [8], as
well as in application areas such as control systems [9],
[10] and fluid mechanics [11], [12]. A dynamical system
can be framed in terms of such an operator either by
considering the evolution of observable functions of the state
using the Koopman operator or by considering the evolution
of densities of states using the Perron-Frobenius operator
[13]. The interest in these approaches is primarily due to
the fact that these operators allow for a linear, although
typically infinite dimensional representation of a nonlinear
system. The linearity of these operators is useful from an
analytical perspective, as it allows for the use of linear
systems techniques such as the analysis of eigenvalues and
eigenfunctions, but also from a computational perspective, as
in many cases a useful approximation for these operators can
be found by considering a finite dimensional approximation
in which the operator is represented as a matrix acting on
coordinates corresponding to a finite set of a set of dictionary
functions [14]–[16].

In applications in control systems, much of the recent work
has been on developing methods involving the Koopman
operator [9], [10], as the transformation to a space of
observable functions can be viewed as a nonlinear change of
coordinates which maps the system to a higher dimensional
space where the dynamics are (approximately) linear [17].
This makes the numerical approximation of the operator
particularly amenable to linear control methods, such as
the linear quadratic regulator (LQR) and model predictive
control (MPC) [17]–[19]. On the other hand, the Perron-
Frobenius operator propagates densities of states forward in
time along trajectories of the system, which can have mul-
tiple interpretations in the controlled setting. For example,
the Perron-Frobenius operator and the Liouville equation,
the related PDE formulation, have been used to determine
controls for agents in an ensemble or swarm formulation
[20]–[22]. It should be noted that such formulations are
closely related to optimal transport problems which also
involve driving an initial distribution to a desired final
distribution (see, e.g., [22]–[24]). Formulations involving the
Perron-Frobenius operator have also been used in the context
of fluid flows to study the transport of distributions of fluid
particles and to detect invariant or almost invariant sets [25],
[26].

Our approach involves first obtaining a finite dimensional
approximation of the Perron-Frobenius generators associated
with the drift and control vector fields of the system, which
allow us to represent the density transport dynamics as a



bilinear system in a lifted state. With this system, we frame
the density control problem as a problem of driving moments
of the density function to the moments of a desired density
function, where the moments of the density can be expressed
as a output which is linear in the lifted state. This output
tracking problem for the lifted bilinear system is then solved
using differential dynamic programming (DDP), an iterative
trajectory optimization scheme.

II. PRELIMINARIES

Consider first the autonomous dynamical system on a
measure space (X ⊂ Rn,A, µ) with a σ-algebra A on X
and µ a measure on (X,A),

ẋ = f(x) (1)

and denote the associated time-t flow from an initial state x0
as Φt(x0), where x ∈ X is the state. The Perron-Frobenius
operator Pt : L1(X) 7→ L1(X) associated with the flow map
Φt is defined as∫

A

[
Pt ρ

]
(x) dx =

∫
(Φt)−1(A)

ρ(x) dx (2)

for any A ∈ A, assuming that the relevant measure µ is
absolutely continuous with respect to the Lebesgue measure
and can thus be expressed in terms of a density ρ (i.e.,
dµ(x) = µ(dx) = ρ(x)dx). It can be shown that the family
of these operators {Pt}t≥0 form a semigroup, (see [13]).
The generator of this semigroup is known as the Liouville
operator, denoted L, or Perron-Frobenius generator and ex-
presses the deformation of the density ρ under infinitesimal
action of the operator Pt [13], [27]. That is,

dρ

dt
= Lρ = −∇x · (ρf) (3)

Alternatively, the action of the generator can be written in
terms of the Perron-Frobenius operator as

Lρ = lim
t→0

Ptρ− ρ

t
= lim

t→0

(
Pt − I

t

)
ρ (4)

where I is the identity operator.
Lemma 1: Suppose the Liouville operator associated with

a vector field f1 : X 7→ Rn is denoted by L1 and the
Liouville operator associated with the vector field f2 : X 7→
Rn by L2, then the Liouville operator associated with the
vector field f(x) = f1(x) + f2(x), is L = L1 + L2.

Proof: The proof is a direct consequence of Eq. 3.
Suppose f(x) = f1(x) + f2(x). Then Lρ = −∇x · (ρ(f1 +
f2)) = −∇x · (ρf1)−∇x · (ρf2) = (L1 + L2)ρ.

The Koopman operator Kt : L∞(X) 7→ L∞(X) propa-
gates observable functions forward in time along trajectories
of the system and is defined as

[Kth](x) = [h ◦ Φt](x) (5)

where h(x) is an observable. The Koopman and Perron-
Frobenius operators are adjoint to one another,∫

X
[Kth](x)ρ(x)dx =

∫
X
h(x)[Ptρ](x)dx . (6)

III. NUMERICAL APPROXIMATION OF THE
PERRON-FROBENIUS OPERATOR AND GENERATOR

Traditionally, the most common way of approximating
the Perron-Frobenius operator is by a set-oriented approach
known as Ulam’s method, in which a domain of interest is
discretized into cells and then the operator is computed by
simulating a large nubmer of trajectories over a short time
and by approximating the operator as the Markov transition
matrix which contains the transition probabilities between
the cells. It is well known that this can be viewed as a
Galerkin projection of the Perron Frobenius operator onto
the function space spanned by indicator functions corre-
sponding to the discrete cells [16]. In recent works involving
numerical approximation of the Koopman operator, one of
the most common approaches is that of extended dynamic
mode decomposition (EDMD) [15], in which the operator
is computed by solving a least squares problem, which can
also be viewed as a Galerkin projection of the operator
onto a function space spanned by a predefined set of basis
functions [15], [16]. By exploiting the duality of the Perron
Frobenius and Koopman operators, it has been shown that
methods typically used for one operator can be used to
compute the other [16]. Based on this idea, recent works
have developed variations of EDMD for the computation
of the Perron-Frobenius operator [16], [28], [29]. In this
work, we also implement EDMD for the computation of the
Perron-Frobenius operator, which we outline below, largely
following [16].

We begin by selecting a dictionary D of k scalar-valued
basis functions, D = {ψ1, ψ2, . . . , ψk}, where ψi : X 7→ R
for i = 1, . . . , k, and denote by V the function space spanned
by the elements of D. We then collect trajectory data with
fixed timestep, ∆t, arranged into snapshot matrices as

X =
[
x1 , · · · , xm

]
(7)

Y =
[
x+1 , · · · , x+m

]
(8)

where the subscript i = 1, . . . ,m is a measurement index
and x+i = Φ∆t(xi).

We then approxmiate the observable function h and den-
sity ρ in Eq. 6 by their projections onto V, the space spanned
by the dictionary D = {ψ1, ψ2, . . . , ψk}.

h(x) ≈ ĥTΨ(x) (9)

ρ(x) ≈ ΨT (x)ρ̂ (10)

where ĥ, ρ̂ ∈ Rk are column vectors containing the projec-
tion coefficients and Ψ : X 7→ Rk is a column-vector valued
function where the elements are given by [Ψ(x)]i = ψi(x).
Substituting these expansions into Eq. (6), we have∫

X
K∆t[ĥTΨ]ΨT ρ̂ dx =

∫
X
ĥTΨP∆t[ΨT ρ̂] dx . (11)

Then replacing [K∆tΨ](x) = Ψ(x+) and assuming that
P∆t can be approximated by a matrix P operating on the
coordinates ρ̂, and evaluating this on the collected data, we
have

Ψ(x+i )Ψ
T (xi) = Ψ(xi)

TΨ(xi)P + ei (12)



for i = 1, . . . ,m, where ei is the residual error arising due
to the matrix approximation of P∆t. This can then be posed
as a least-squares problem for the matrix P

min
P

∥ΨY Ψ
T
X −ΨXΨT

XP∥22 (13)

where ΨX ,ΨY ∈ Rk×m are matrices containing with
columns containing Ψ evaluated on the columns of X and
Y respectively. The analytical solution of this least squares
problem is

P =
(
ΨXΨT

X

)†
ΨY Ψ

T
X (14)

where (·)† is the Moore-Penrose pseudoinverse.
Given this matrix approximation of the operator, P , if

the timestep ∆t chosen in the data collection is sufficiently
small, the corresponding matrix approximation L of the
Perron Frobenius generator can be approximated based on
the limit definition of the generator in Eq. 4. as

L ≈ P − Ik
∆t

(15)

where Ik is the k × k identity matrix. Just as the matrix
operator P approximates the propagation of a density func-
tion ρ by advancing the propagation coordinates ρ̂ forward
for a finite time, the approximation of the generator allows
us to approximate the infinitesimal action of the operator
Pt by approximating the time derivative of the projection
coordinates

dρ̂

dt
= Lρ̂ . (16)

A. Extension to controlled systems

In the context of applying the Koopman operator to control
systems, several recent works have noted the usefulness of
formulating the problem in terms of the Koopman generator,
rather than the Koopman operator itself [30]–[34], which
typically results in a lifted system that is bilinear in the
control and lifted state. This approach allows for a better
approximation of the effects of control, especially for sys-
tems in control-affine form

ẋ = f(x) +

nc∑
i=1

gi(x)ui (17)

as it expresses the effect of the control vector fields gi in a
way that is also dependent on the lifted state. Here we apply a
similar approach to the density transport problem, expressed
in terms of the Perron-Frobenius generator. As shown in
Ref. [32] for the Koopman generator, by the property of
the Perron-Frobenius generator given in Lemma 1, if the
dynamics are control-affine, then the generators are also
control affine, as can be seen by application of Eq. 3. This
leads to density transport dynamics of the following form

d

dt
ρ(x) = (L0ρ)(x) +

nc∑
i=1

ui(Biρ)(x) (18)

where L0 is the Perron Frobenius generator associated with
the vector field f(x) and similarly, the Bi are the Perron
Frobenius generators associated with the control vector fields

gi(x). Therefore, given the finite dimensional approximation
of these generators, we can approximate the density transport
dynamics as

dρ̂

dt
= L0ρ̂+

nc∑
i=1

uiBiρ̂ (19)

where the matrices L0 and Bi are the matrix approximations
of the operators in Eq. 18.

A similar approximation in terms of the Perron-Frobenius
generator has been implemented with control [35], [36] in
order to exploit a convex formulation of an optimal control
problem in terms of densities.

B. Propagation of moments
In order to make the problem of controlling a density

function using a finite dimensional control input well-posed,
we formulate the problem as a control problem of a finite
number of outputs. In particular, we will describe the density
function, in terms of a finite number of its moments. For a
scalar x, recall that the ith raw moment, mi is defined as
mi =

∫
X x

iρ(x)dx and the ith central moment, µi about the
mean m1 is µi =

∫
X(x−m1)

iρ(x)dx.
Given a projection of the density as in Eq. 10, the mean

is approximated as

mi
1 =

∫
xiρ(x)dx = ρ̂T

∫
xiΨ(x)dx (20)

which simply indicates that the mean of the density can
be written as a summation of the means of the dictionary
functions, weighted by the projection coefficients. For higher
moments, if the central moment is considered, it will be poly-
nomial in the projection coefficients due to its dependence
on the mean, whereas the raw moment remain linear in the
projection coefficients. For this reason, we choose to work
with the raw moments, as the central moments can also be
expressed in terms of the raw moments.

In the numerical examples shown later, the dictionary D
consists of Gaussian radial basis functions of the form

ψl(x) = exp

(
− (x− cl)

T (x− cl)

2s2

)
(21)

where cl is the center of the lth basis function, and s is a
scaling parameter affecting the spread. For this dictionary,
the mean is

mi
1 = 2πs2ρ̂T ci (22)

where the superscript i refers to the coordinate index of the
state vector, not exponentiation, and ci is a column vector
containing the ith coordinate of the basis function centers.
Similarly, the second raw moment can be written as

mij
2 =

∫
xixjρ(x)dx = ρ̂T

∫
xixjΨ(x)dx (23)

where the last integral reduces to∫
xixjψl(x)dx =

{
2πs2(s2 + (cil)

2) i = j

2πs2cilc
j
l i ̸= j

for a given basis function ψl(x) where, again, superscripts i
and j are coordinate indices.



Fig. 1: Moment propagation of proposed method for a Duffing oscillator with sinusoidal forcing. Red points show trajectories
from initial conditions sampled from the initial density, ρ(x(0)) ∼ N ([−0.5; 1], 0.05I). Red circle and red ellipse show the
sample mean and 2σ sample covariance ellipse, respectively. The black circle and black ellipse are the predicted mean and
2σ covariance ellipse.

C. Numerical example

To illustrate the ability of the proposed framework to
propagate density functions forward in time, we consider
the propagation of an initial density for a forced Duffing
oscillator system, given by

d

dt

(
x1
x2

)
=

(
x2

x1 − x31 + u

)
(24)

where u is the control input. For the purpose of this sim-
ulation, we set u(t) = sin(4πt) and the prediction results
are shown in Figs. 1 - 2. For the generator calculation, a
dictionary of Gaussian radial basis functions, as shown in
Eq. 21, is used where the centers lie on an evenly spaced
30 × 30 grid ranging from −2.5 to 2.5 in x1 and x2. The
operators are approximated using data collected from short
time trajectories with ∆t = 0.005 for a 50 × 50 grid of
initial conditions on the same region. The predicted moment
is compared to the sample moment obtained from 1000
trajectories from initial conditions sampled according to the
initial density. We see that the moment propagation of the
proposed method is good for approximately 3 seconds, which
motivates the use of this method in a control formulation,
as detailed in the following sections. Also shown for com-
parison in Fig. 2 is a linear prediction, which is computed
by propagating the initial Gaussian through a linearization
of Eq. 24, where the linearization is re-computed at each
timestep about the predicted mean, as is commonly done in
the a priori prediction step of an extended Kalman filter.

IV. CONTROL FORMULATION

We have shown in Sec. III-A and III-B that the problem
of steering a density ρ to a desired density can be expressed
as an output tracking problem on a lifted, bilinear system
given by Eq. 19, where the projection coefficients ρ̂ can be
interpreted as the lifted state. Then, if the raw moments are
taken to be the relevant output, the output, y is linear in the
lifted state, y = Cρ̂, where the elements of the output matrix
C are given by rewriting Eqs. 20, 23 in matrix form.

For the optimal output tracking problem, we consider a
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Fig. 2: Moment propagation for a forced Duffing oscillator.
Left, top: First raw moment (mean). Left, bottom: sinusoidal
control signal. Right: 2nd raw moment. The proposed method
is labelled PF prediction.

discrete time optimal control problem

min
u1,u2,...,uH−1

H−1∑
t=1

l(ρ̂t, ut) + lH(ρ̂H) (25a)

s.t. ρ̂t+1 = F (ρ̂t, ut) (25b)
yt = Cρ̂t (25c)

where H is the number of timesteps in the time horizon and
Eq. 25b represents the discrete time version of Eq. 19.

In particular, for output tracking, we consider a quadratic
cost of the form

l(ρ̂t, ut) = (yt − yreft )TS(yt − yreft ) + uTt Rut (26)

where S and R are weighting matrices which define the rela-
tive penalty on tracking error and control effort, respectively.
Since the output y is linear in the lifted state ρ̂t, this cost
can be rewritten as a quadratic cost in terms of ρ̂t, with an
added linear term.

It is well known that for optimal control problems on
bilinear systems with quadratic cost, an effective way of



Fig. 3: Controlled transport through the Duffing system from an initial density ρ(x(0)) ∼ N ([0; 1], 0.025I)
toward the equilibrium point at (0, 1) (green circle). Red circle and red ellipse show the sample mean and 2σ sample
covariance ellipse, respectively. The black circle and black ellipse are the predicted mean and 2σ covariance ellipse..

solving the problem is by iteratively linearizing and solving
a finite time linear quadratic regulator (LQR) problem about
a nominal trajectory, utilizing the Ricatti formulation of
that problem [37]. For this reason, we solve the optimal
control problem using differential dynamic programming
(DDP) [38], [39], which is closely related to the method of
iterative LQR. We briefly recount the primary steps of this
algorithm below.

DDP computes a locally optimal control around a nominal
trajectory by minimizing a quadratic approximation of the
value function along this trajectory, and then doing this
iteratively about the new trajectories obtained by applying
the locally optimal control. First define the value function
V (ρ̂t, t) at time t as,

V (ρ̂t, t) = min
ut

[l(ρ̂t, ut) + V (ρ̂t+1, t+ 1)] (27)

which expresses the optimal cost-to-go from ρ̂t, where
V (ρ̂H , H) = lf (ρ̂H). Denote by Q(δρ̂, δu) the change in
the value function due to applying change in control input
δu about the nominal trajectory and consider its quadratic
approximation

Q(δρ̂, δu) ≈Qρ̂δρ̂+QT
u δu+ δρ̂TQρ̂uδu

+
1

2
δρ̂TQρ̂ρ̂δρ̂+

1

2
δuTQuuδu

(28)

where these derivatives are given by

Qρ̂ = lρ̂ + FT
ρ̂ V

′
ρ̂

Qu = lu + FT
u V

′
ρ̂

Qρ̂ρ̂ = lρ̂ρ̂ + FT
ρ̂ V

′
ρ̂ρ̂Fρ̂ + V ′

ρ̂ · Fρ̂ρ̂

Quu = luu + FT
u V

′
ρ̂ρ̂Fu + V ′

ρ̂ · Fuu

Qρ̂u = lρ̂u + FT
ρ̂ V

′
ρ̂ρ̂Fu + V ′

ρ̂ · Fρ̂u

where the notation (·)′ indicates the next time step. The
algorithm proceeds by computing these derivatives by re-
cursing backward in time along the nominal trajectory from
the end of the horizon. At each iteration, the control policy is
improved by optimizing this quadratic expansion with respect
to δu

δu∗ = argmin
δu

Q(δρ̂, δu) = −Q−1
uu (Qu +Quρ̂δρ̂) (29)

This can be seen as providing a descent direction in the
space of control policies. An updated nominal control is then

computed by a linesearch over a stepsize parameter α to
update the policy, that is

unew = u− αQ−1
uuQu −Q−1

uuQuρ̂δρ̂

and this new control is applied to obtain a new nominal
trajectory, and this procedure is iterated until the relative
change in cost falls to less than a specified tolerance. For
full details of the algorithm, the reader should refer to Refs.
[38], [39].

V. VALIDATION AND RESULTS

Here we consider two examples of the density control
formulation using Perron Frobenius generators.

A. Example 1: Forced Duffing oscillator

As a first example, we consider the forced Duffing oscil-
lator of Eq. 24, and we use DDP to determine a control
sequence to steer a Gaussian initial density ρ(x(0)) ∼
N ([1; 1], 0.025I) toward the equilibrium point at (1, 0) over
a time horizon of 2s. The generators are approximated using
the same data as described in Sec. III-C and the same
timestep of 0.005s is used for DDP. In differential dynamic
programming, the in-horizon cost weights on the reference
error of the first two moments and control effor are all set
to unity. The terminal cost on the reference error in the
moments is set to 1000, and only the first two moments
are considered. The target raw second moment is computed
from the desired mean, with the desired variance taken to be
zero. The results of this computation are shown in Fig. 3-5.

In Fig. 6, we show a comparison of the performance of the
proposed controller, labelled ‘PF-DDP’ with a standard DDP
controller, which computes a control on the Duffing system
directly (rather than a lifted state), with the initial condition
being the mean. That is, the standard DDP controller acts on
the mean as if it were a deterministic initial condition of the
system. The comparison shown is the mean and one standard
deviation region from trajectories from a set of 500 initial
conditions sampled from the initial distribution, with each of
the respective controllers applied. We see that the proposed
controller moves the mean of the distribution closer to the
reference, while maintaining nearly the same variance as the
standard DDP controller.



Fig. 4: Controlled transport of fluid particles, driven by two rotlets, or micro-rotors, in a Stokes flow from an initial density,
ρ(x(0)) ∼ N ([1; 1], 0.025I) toward a target mean (green circle) at (−1,−1). The rotors are located at (−1, 0) and (0, 1),
as indicated by the black circle-cross. Red circle and red ellipse show the sample mean and 2σ sample covariance ellipse,
respectively. The black circle and black ellipse are the predicted mean and 2σ covariance ellipse. Gray streamlines indicate
the flow field produced by the rotlets at the instant shown.

Fig. 5: Control of raw moments for the forced Duffing
system. The black line indicates the target (reference). Left,
bottom: control from differential dynamic programming for
the generator system. Right: 2nd raw moment. Predicted
values are from the Perron-Frobenius generator computation.
True values are given by the sample moment.
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Fig. 6: Comparison of the proposed Perron Frobenius gener-
ator DDP with standard DDP for the forced Duffing system.
Shaded region indicates one standard deviation

B. Example 2: Rotor-driven Stokes flow

As a second example, we consider the problem of steering
a distribution of fluid particles in a Stokes flow, where the
flow is produced by two micro-rotors. The micro-rotors are
modelled as rotlets, the Stokes flow singularity associated
with a point torque in the fluid. For a collection of Nr rotlets,
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Fig. 7: Streamlines of a rotor driven Stokes flow, where the
left rotor torque is u1 = −1 and the right rotor torque is
u2 = 1.

this flow is given by

dx

dt
=

Nr∑
i=1

Ti × (x− x̄i)

∥x− x̄i∥3
(30)

where x̄i and Ti denote the location and torque of the i-th
rotor, respectively. We consider the case where there are two
such rotors lying in the x1-x2 plane, located at x̄1 = (−1, 0)
and x̄2 = (1, 0) and the controls for the problem are taken
to be torques u1 = T1, u2 = T2, where the direction of
these torques is taken to be normal to the x1-x2 plane (in
the positive x3 direction. The streamlines for such a flow are
illustrated in Fig. 7 for the case where u1 = −1, u2 = 1.

For this example, the task is to drive a Gaussian initial
density ρ(x(0)) ∼ N ([1; 1], 0.025I) toward a target mean
at (−1,−1) over a time horizon of 2s. Again, we consider
a timestep of ∆t = 0.005s for both the computation of the
generators and for DDP. The in horizon costs weights for
the mean error are set to 2, while the weights for the second
moment error and control effort are unity. The terminal cost
weight on the mean error is 1000 and the terminal cost
weight on the second moment error is 500. Results from
this computation are shown in Figs. 4,8,9.



Fig. 8: Control of raw moments for the rotlet-driven Stokes
flow. The black line indicates the target (reference). Right:
2nd raw moment. Predicted values are from the Perron-
Frobenius generator computation. True values are the sample
moment.

Fig. 9: Control from differential dynamic programming for
the generator system applied to the micro-rotor flow.

We see in Fig. 9 that DDP yields a control which drives
the mean to the target by first giving a significant counter-
clockwise torque on the right rotor to drive the density to
a point between the rotors, at which point the left rotor is
initiated to drive the flow with a clockwise torque, pulling
the density mean near to the target.

This example demonstrates an alternative physical in-
terpretation of the density transport problem, where the
density represents a distribution of fluid particles. This also
demonstrates the effectiveness of the proposed method on
a system which is linear in the controls, but in which the
control vector fields are nonlinear.

VI. CONCLUSION

In this work, we have studied the problem of transporting
density functions of states through a controlled dynamical
system. This problem formulation has applications both in
fluid mechanics and in the control of uncertain systems. Our
approach is based on approximations of the Perron-Frobenius
operator, whereby we show that approximations of this
operator and its generator can be used to model the density
transport dynamics as a high-dimensional system which is
bilinear in the lifted state and the control. We demonstrated
this approach on two examples, a forced Duffing system,
in which the density can have the interpretation as an

uncertainty in the initial state and on a rotor driven Stokes
flow, in which the density formulation takes on the fluid
mechanics interpretation of describing a distribution of fluid
particles. Future work in these areas could include extending
the proposed control formulation for use in a constrained
model predictive control framework for uncertain systems or
by studying the fluid transport by more realistic biological
microswimmers or artificial microrobots.
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