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Abstract Micro-robots that can propel themselves

in a low Reynolds number fluid flow by converting

their rotational motion into translation have begun

attracting much attention due to their ease of fab-

rication. The dynamics and controllability of the

motion of such microswimmers are investigated in

this paper. The microswimmers under considera-

tion here are spinning spheres (or rotors) whose

dynamics are approximated by rotlets, a singular-

ity solution of the Stokes equations. While singu-

larities of Stokes flows are commonly used as theo-

retical models for microswimmers and micro-robots,

rotlet models of microswimmers have received less

attention. While a rotlet alone cannot generate trans-

lation, a pair of rotlets can interact and execute net

motion. Taking the control inputs to be strengths

of the micro rotors, the positions of a pair of such

rotors are not controllable in an unbounded pla-

nar fluid domain. However, in a bounded domain,

which is often the case of practical interest, we

show that the positions of the micro rotors are con-

trollable. This is enabled by the interaction of the

rotors with the boundaries of the domain. We show

how control inputs can be constructed based on

combinations of Lie brackets to move the rotors
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from one point to another in the domain. Another

contribution of this paper is the creation of a frame-

work for path planning and control of the motion

of Stokes singularities that model the dynamics of

microswimmers. This can be extended to microswim-

mers with other shapes moving in confined fluid

domains with complex boundaries.

Keywords Micro-robot · Controllability · Motion

Planning

1 Introduction

The ability to precisely maneuver a micro-robot or

a collection of small robots in a small scale fluid

environment has enormous implications for areas

such as targeted drug delivery [1–4], particle and

cell manipulation [2–5], cell identification and di-

agnostics [6], and the fabrication of novel mate-

rials with tunable properties [7]. In recent years,

magnetic microswimmers actuated by means of a

time-varying external magnetic field have attracted

much attention. This is due to the feasibility of fab-

rication of such robots and the numerous poten-

tial applications for remotely controlled locomo-

tion [8–13].

The fabrication of a magnetic swimmer with

a specialized geometry is necessary because of the

reversibility of flow at low Reynolds numbers [14].

In general, the actuation of a magnetic micro-robot



2 Jake Buzhardt et al.

could be in the form of a force or a torque, but

a net force that directly leads to a translation of

the robot requires large gradient of the magnetic

field. On the other hand, a torque can be efficiently

exerted on the magnetic body via a time-varying

magnetic field. Such a torque causes the body to

rotate. For bodies possessing the necessary asym-

metries, the interaction of the spinning body with

the viscous fluid produces a propulsive force [15,

16]. Inspired by the flagellar propulsion of micro-

organisms, microrobot geometries with helicoidal

symmetry are commonly used to achieve this sort

of locomotion [3, 5]. More recently, spherical mi-

crobeads have been used to construct simpler chi-

ral geometries possessing two perpendicular planes

of symmetry but not three [11, 12]. These struc-

tures may be fabricated by simpler processes and

have been shown to swim theoretically and experi-

mentally. Bodies with spherical or ellipsoidal sym-

metry, however, do not enable the coupling of a

translational motion to a torque, and thus do not

translate due to a rotating magnetic field in the ab-

sence of a boundary.

While these simple geometries are not able to

achieve locomotion in free space, the presence of

a boundary can introduce the necessary asymme-

try required for translational motion [17, 18]. Even

for swimmers that can achieve propulsion in free

space, the presence of a boundary can lead to in-

teresting dynamics [19, 20]. The motion of mi-

croswimmers with complex geometries is frequently

modeled in free space by constructing resistance

and mobility matrices that linearly relate the body

velocities to the forces and torques exerted on the

body. However, this approach is significantly com-

plicated by the presence of no-slip boundaries, as

the mobility relationships become dependent on

the the position and orientation of the body relative

to the boundary. For this reason, singularity mod-

els for swimming bodies have become common-

place, as they allow for a rapid approximation of

the full fluid velocity field [20, 21]. Furthermore,

image systems for these singularity models have

been derived to account for the reflected velocity

field due to simple boundaries [22].

While a single spinning sphere does not trans-

late in an unbounded domain, two or more closely

spaced spheres can interact hydrodynamically and

swim together, essentially tugging each other. Such

pair swimmers with very simple geometries do not

require any additional fabrication and can replace

a single micro-robot with a complex geometry. The

mathematical models of the hydrodynamic inter-

actions for such simple bodies are also sufficiently

tractable to allow the design of controllers that can

control the motion of a pair of such bodies. Pairs

of such microrotors could potentially perform ma-

nipulation tasks that would otherwise require mi-

crorobots with more complex geometries and fab-

rication procedures.

In this paper, we consider the problem of con-

trolling the motion of two spinning microrotors in

a confined domain. We consider a well known ap-

proximation of a spinning sphere by a two dimen-

sional rotlet, a singularity of the Stokes equation

[16, 23–25]. The velocity field due to a spinning

sphere confined to a cross-sectional plane whose

normal vector is aligned with the axis of rotation

and which passes through the center of the sphere

can be approximated by a two-dimensional rot-

let [25]. Such a model is appropriate for neutrally

buoyant spheres that are constrained by some mech-

anism, such as a viscous film [26, 27]. Similar two-

dimensional models have also been applied to sys-

tems of rotating disks [28]. The control inputs for

our system are taken to be the strengths of the rotlets,

which are directly proportional to the torques on

the spheres due to the external magnetic field. We

show that the motion of a pair of microrotors in

an unbounded domain lacks is not fully control-

lable due to the existence of an invariant of mo-

tion. However in the more practically relevant case

of a fluid confined to a bounded domain, the mo-

tion of the rotors can be controllable almost ev-

erywhere in the domain. We show this through the

application of Lie algebra rank condition (LARC),

[29–32]. This approach shows the necessary Lie

brackets of the control vector fields that allow for

motion in any direction of the configuration space

of the system of micro rotors. This is illustrated

through the computation of a few elementary mo-

tions.

While the results in the paper pertain to the

case where the micro rotors are confined to a cir-
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cular domain of the fluid, the result can be gener-

alized to other bounded geometries of the fluid do-

main, through the method of conformally mapping

a circle to a simply connected region in the com-

plex plane. More importantly, this framework of

modeling micro-robots by a few singularities and

using this model to control the robots through the

motion primitives can be extended to other swim-

mers such as the helical swimmer and the three-

sphere swimmers.

2 Dynamics of a pair of micro rotors

The Stokes equations describing the motion of a

fluid at a scale where inertial forces are negligible

and viscous forces dominate are

∇p−µ∇2u = 0

∇ ·u = 0

(1)

subject to boundary conditions, where u is the ve-

locity of the fluid, p is the pressure, and µ is the

dynamic viscosity of the fluid. Singularity solu-

tions of the Stokes equations and linear combi-

nations of such solutions have served as popular

models for locomotion [20, 21, 33]. The rotlet is a

singularity that describes the velocity of the fluid

due to a torque exerted on it at a point, such as due

to the spin of the sphere [23].

2.1 Rotlets in the Unbounded Domain R2

The velocity of the fluid at a point x ∈ R2 due to a

rotlet of strength γ k̂ located at x0 is given by

u(x) =−γ k̂×
x−x0

‖x−x0‖2
. (2)

where k̂ is the unit vector orthogonal to the plane

of motion.

The stream lines induced by the rotlet form

concentric circles around the rotlet, with the speed

of the fluid along these streamlines decreasing with

the distance from the rotlet. In (2), the velocity

u(x) becomes undefined at x = x0. This singular-

ity manifests itself only in the tangential compo-

nent of the fluid along the streamlines. That is,

in the limit of x = x0, a fluid particle collocated

with the rotlet spins in place but does not move.

This motivates one to consider only the desingular-

ized component of the velocity field by assuming

that the rotlet does not have a self-induced velocity

[16, 25]. Therefore a single rotlet does not move.

If n rotlets are present in the domain, with the

rotlet locations being (x1, ...,xn), then each rotlet

is advected by the velocity field induced by the

other n−1 rotlets. The velocity components of the

i-th rotlet are given by

dxi

dt
=

n

∑
j=1
j 6=i

γ j

(yi − y j)

r2
i j

dyi

dt
=

n

∑
j=1
j 6=i

−γ j

(xi − x j)

r2
i j

(3)

where ri j =
√

(xi − x j)2 +(yi − y j)2 is the distance

between the i-th and the j-th rotlets.

Note that while the velocity of the fluid de-

scribed by (2) is not continuous at the locations of

the rotlets, the dynamics of the rotlets themselves

are governed by C∞ vector fields.

We will consider the specific case of the mo-

tion of two rotlets with the control inputs being

the strengths of the rotlets, γ1 and γ2. Equation (3)

defines a driftless control affine system, where the

positions of the rotlets, ξ = [x1,y1,x2,y2]
T evolve

on the configuration manifold R4.

We show that regardless of the rotlet strengths,

the distance between the rotlets remains invariant.

This is seen through a direct calculation. Suppose

r denotes the distance between the two rotlets

d

dt
r2 =

d

dt
((x2 − x1)

2 +(y2 − y1)
2)

= 2(x2 − x1)(ẋ2 − ẋ1)+2(y2 − y1)(ẏ2 − ẏ1)

=
2

r2
(x2 − x1)(γ1(y2 − y1)− γ2(y1 − y2))

+
2

r2
(y2 − y1)(−γ1(x2 − x1)+ γ2(x1 − x2))

=
2

r2
(x2 − x1)(γ1 + γ2)(y2 − y1)

−
2

r2
(x2 − x1)(γ1 + γ2)(y2 − y1)

= 0.
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This implies that the control system (3) is not con-

trollable, since neither rotlet can move relative to

the other rotlet along the line joining them.

2.2 Confined Domain with Circular Boundary

In [24], Meleshko and Aref have shown that the

velocity at a point x = (x,y) in a bounded, circular

domain due to a single point rotlet of strength γ
located at x = b,y = 0 is described by the stream

function

ψ(x,y) = ψ1 +ψ2

=
γ

2
lnA(x,y)+

γ

2

(

ln
1

B(x,y)
+

C(x,y)

B(x,y)

)

(4)

where,

A(x,y) = r2 −2bx+b2

B(x,y) = a2 −2bx+

(

r2b2

a2

)

C(x,y) =

(

1−
r2

a2

)(

a2 −
r2b2

a2

)

Here, r =
√

x2 + y2 and a is the radius of the cir-

cular domain. The stream function

ψ1 =
γ

2
ln(A(x,y))

is the same as for the rotlet in the unbounded do-

main R2 and the stream function

ψ2 =
γ

2

(

ln
1

B(x,y)
+

C(x,y)

B(x,y)

)

is due to a system of image singularities placed

outside the circular domain. The combined stream

function ψ produces a fluid velocity field that sat-

isfies the boundary condition of zero normal and

tangential velocity on the boundary. Differentiat-

ing (4) gives the velocity field due to a single rotlet

V(x,y) =
γ1

2













(B
A
)(BAy −ABy)

B2
+

BCy −CBy

B2

−(B
A
)(BAx −ABx)

B2
−

BCx −CBx

B2













(5)

where Ax, Bx, Cx and Ay, By, Cy denote the partial

derivatives of the functions with respect to x and y

respectively.

The velocity of the fluid at a point (x,y) due

to a rotlet of strength γ1 located at (x1,y1) can be

obtained from (4) through a rotation transforma-

tion of the coordinates. The fluid velocity field is

first computed in a frame of reference such that the

rotlet lies at (b,0) where b =
√

x2
1 + y2

1 and trans-

formed back to the spatial frame,

u(x,y) = R−1(θ1)V(x,y) (6)

where θ1 = arctan(y1/x1) and R(θ1) is the rotation

matrix,

R(θ1) =

(

cosθ1 sinθ1

−sinθ1 cosθ1

)

.

As in the case of the unbounded domain, the

velocity of the rotlet is desingularized, i.e. a rot-

let does not induce a velocity on itself. However

the image singularities do induce a velocity on the

rotlet,













dx1

dt

dy1

dt













= R−1(θ1)
γ1

2













−By

B
+

BCy −CBy

B2

Bx

B
−

BCx −CBx

B2













.

(7)

It is a straightforward calculation to show that

only when one rotlet is present in the circular do-

main, then according to ((7)), u ·x = 0. This shows

that the rotlet always moves perpendicular to its

position vector and therefore executes motion on

a circle. This circular path is independent of the

strength of the rotlet, which is the only control in-

put. Therefore the position of the rotor is not con-

trollable when only one is present in the domain.

When n rotlets are present in the circular do-

main, the velocity of the i-th rotlet is the sum of

the velocities induced by the other n− 1 rotlets,

the image systems of the other n− 1 rotlets and

its own image singularities. In particular, the gov-

erning equations for the motion of two rotlets of
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strengths γ1 and γ2 respectively, in the circular do-

main are













dxi

dt

dyi

dt













=R−1(θi)
γi

2













−Biy

Bi

+
BiCiy −CiBiy

B2
i

Bix

Bi

−
BiCix −CiBix

B2
i













+

2

∑
j=1
j 6=i

R−1(θ j)
γ j

2
V j(xi,yi)

(8)

In (8) V j(xi,yi) is the velocity induced by the j-th

rotlet on i-th rotlet. The first term on the right hand

side of (8) is the velocity induced by the image

system of the i-th rotlet on the i-th rotlet. The terms

Bi and Ci are the same as in (4) except that the

location of the rotlet is (xi,yi).

We illustrate the rich dynamics of micro rotors

described in this section, by selecting the case of

two rotors. Figure 1(a) shows the streamlines of

the fluid, at t = 0, when two rotors each of unit

strength, γ1 = γ2 = 1, are initially located at (x1,y1)=

(0,0) and (x2,y2) = (0.5,0). Figure 1(b)-(d) show

the ensuing trajectories of the two rotors. Such dy-

namics can undergo several transitions as the ini-

tial location of the rotors changes, as discussed in

[34].

In the rest of the paper, we focus on the motion

and controllability of a pair of micro rotors whose

governing equations are (8).

3 Controllability

The position of the two micro rotors parameterized

by ξ = [x1,y1,x2,y2]
T evolves on the configuration

manifold Q= {(x1,y1,x2,y2)∈R4 | x2
1+y2

1 ≤ a2∧

x2
2 + y2

2 ≤ a2}. The tangent space at any point ξ ∈

Q will be denoted by TξQ. The governing equation

(8) for the motion of the rotlets is a driftless control

affine system, Σ , with the strengths of the rotlets

being the control inputs γ1 and γ2

Σ : ξ̇ = g1(ξ )γ1 +g2(ξ )γ2 (9)

(a) (b)

(c) (d)

Fig. 1: (a) Streamlines of the fluid when two rotlets

of unit strength are located at (0,0) and (0.5,0).

(b), (c), and (d) show trajectories of the two rotlets,

(x1(t),y1(t)) and (x2(t),y2(t)) for (b) 0 ≤ t ≤ 1,

(c) 0 ≤ t ≤ 2, and (d) 0 ≤ t ≤ 15.

where g1 and g2 are C∞ vector fields and γ1 ∈ R

and γ2 ∈R. Here each of the the vector fields gi(ξ )
is a column vector whose elements are the coeffi-

cients of γi from (8).

3.1 Small time local controllability

We first show that the two rotlets can move in any

direction from almost any initial positions in an

arbitrarily small time, i.e. for almost any initial

state ξ0 of the control system Σ , and small enough

time t0, the reachable set RΣ (t < t0,ξ0) contains a

neighborhood of ξ0. This is shown using the Lie

algebra rank condition (LARC) [29–32].

Given two vector fields, gi and g j the Lie bracket,

denoted [gi,g j] is defined as

[gi,g j] = ∇g j gi −∇gi g j.

This Lie bracket can be interpreted as the infinites-

imal motion that results from flowing in the se-

quence of directions gi ,g j ,−gi ,−g j. Associated
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with the control system Σ is a distribution

∆ = span{g1,g2} (10)

whose closure under Lie bracketing we denote by

∆̄ . For drift free control systems, such as (9), the

Lie algebra rank condition states that if ξ ∈Q and

dim(∆̄ξ ) = dim(TξQ) , then the system is small

time locally controllable (STLC) [29–32]. For drift-

free systems such as Σ , small-time local controlla-

bility implies controllability [29].

To evaluate the controllability of a system of

two rotlets in a confined circular domain, we ap-

ply the LARC to (8). The explicit calculation of the

Lie brackets of (9), performed using the software

Maple, is not shown here to avoid long expres-

sions. Furthermore, deeply nested brackets are dif-

ficult to compute even using a software like Maple.

The linear independence of the Lie brackets is eval-

uated numerically at specific values of ξ . By nu-

merically evaluating a set of Lie brackets for 10,000

different values of ξ distributed uniformly through

out the domain we find that the vector fields

g1

g2

[ g1,g2 ]

[ g1, [ g1,g2 ] ]

(11)

span the tangent space TξQ= R4 at all points ξ ∈

Q except the special configurations in which both

rotlets lie on a chord passing through the center of

the circular domain. We denote this configuration

by S and express it mathematically as

S= {(x1,y1,x2,y2)∈Q | ∃λ s.t. λ (x1,y1)
T =(x2,y2)

T}

Higher order Lie brackets were not evaluated

for ξ ∈ S since the computations were numerically

unstable. The set C is dense in Q. The possible de-

ficiency in the dimension of ∆ for ξ ∈ S does not

however preclude controllability, but only small

time local controllability. This is because for any

ξ ∈ S the Lie brackets in (11) span the directions

perpendicular to the line joining the rotlets. This

means that on S the rotlets can still move parallel

to one another such that they enters the set C and

from any initial configuration ξ0 ∈ C, the system

of two rotlets can be driven in any direction in an

arbitrarily small amount of time through a motion

generated by the Lie brackets given in (11).

4 Simulation of Lie Brackets and Motion

Planning

It has been shown above that for most configura-

tions, four linearly independent vector fields from

the Lie algebra can be found to span the tangent

space. This means that there exist inputs γ1 and γ2

that can produce motion in any desired direction.

We show motion along each of the Lie bracket di-

rections by integrating the the vector fields (11) in

time. Motion due to each of the vector fields is il-

lustrated in Fig. 2.

The motion of the rotlets associated with the

vector field g1 is merely the motion of a rotlet and

a non-spinning sphere or a fluid tracer (γ2 = 0).

The trajectory of the two rotors for this vector field

is shown in Fig. 2(a) for a generic initial position

ξ0 ∈ C. Similarly, the motion of the rotlets asso-

ciated with the vector field g2 is shown in Fig.

2(b). The motion associated with the vector fields

[g1,g2] and [g1, [g1,g2]] in Fig. 2 is obtained by nu-

merically integrating the equations ξ̇ = [g1,g2] and

ξ̇ = [g1, [g1,g2]].

4.1 Motion in a Given Direction

It has been shown that the vector fields given by

the Lie brackets in (11) span the tangent space Tξ0
Q

associated with the system Σ of (9) at any config-

uration ξ0 ∈ C, and thus Σ is locally controllable

from these configurations. Therefore, a motion in

the direction of any vector v ∈ Tξ0
Q may be gener-

ated by some linear combination of the Lie brack-

ets that span the tangent space. With the Lie brack-

ets given in (11) we can write

v = a1 g1 +a2 g2 +a3 [g1,g2]+a4 [g1, [g1,g2]]

= G(ξ0) a

(12)
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(a) (b)

(c) (d)

Fig. 2: Rotlet motion due to the vector fields g1,

g2, [g1,g2], and [g1, [g1,g2]] for 1 time unit from

an initial configuration shown by red filled circles

at ξ (0) = [0.5 , 0.5 , −0.5 , 0.5]T . Green filled

circles denote the final positions of the rotlets at

t = 1.

where G(ξ0) is the matrix with columns given by

the vector fields in (11) evaluated at the initial con-

figuration ξ0 and a is a vector of coefficients. While

the matrix G(ξ0) depends on the initial configu-

ration, it has full rank for any ξ0 ∈ C. Therefore,

G(ξ0) is invertible and we can solve for the coef-

ficients needed to achieve motion in an arbitrary

direction v ∈ Tξ0
Q as

a = [G(ξ0)]
−1 v (13)

Solving this equation yields the linear combina-

tion of the vector fields that is required to instanta-

neously steer the system from a given state ξ0 ∈C

in the direction specified by v ∈ Tξ0
Q.

Equation (13) describes a way to generate a ve-

locity in any arbitrary direction v from any con-

figuration ξ0 ∈ C. Therefore, this procedure may

be used to compute the linear combination of the

control vector fields needed to produce the veloc-

ity required at each instant for the system to track a

path through the controllable subspace. To demon-

strate the controllability of the system and the use

of this technique, we show several kinds of simple

motions for the system in Fig. 3, along with the

coefficients of the vector fields required to gener-

ate them. These motions include the following -

the two rotors moving along a line a joining each

other, towards each other in Fig. 3(a.1) together in

Fig. 3(b.1) and moving in a direction perpendicular

to the line joining them, in Figs. 3(c.1)-(d.1). The

subfigures Fig.3(a.2), (b.2), (c.2) and (d.2) show

the variation in the coefficients a1 − a4 along the

trajectories of the rotors. We note that these coef-

ficients are directly related to the control inputs γ1

and γ2. The initial condition for the system in all

the cases shown in Fig. 3 is the arbitrarily chosen

point ξ0 = [0.5,0,−0.25,0.25]T .

Prescribed trajectories of the rotors as well as

for the case of motion in a formation can be con-

structed from such primitives. It is plausible that

generic smooth curves can also be tracked by the

rotors by combining the infinitesimal flows gener-

ated by the Lie brackets along a prescribed path

using the techniques outlined in [31, 35].

5 Conclusion

Stokes flow singularities serve as convenient math-

ematical approximations of microscale swimmers

in a low Reynolds number flow. For instance, rotlets

serve as a model for spinning spheres, while a trans-

lating sphere is modeled by a Stokeslet with a po-

tential dipole. For more complex geometries, such

as flagellar and helical swimmers, the swimmer

surface may be discretized into a distribution of

singularities in a boundary element formulation.

Singularities can also be useful to model the ef-

fects of fixed or moving boundaries and the in-

teraction with other swimmers. Singularity models

can lead to low dimensional but physically realis-

tic control models of micro swimmers and allow

for the formulation of path planning algorithms.

Furthermore these models provide an insight into

controllability or lack thereof for individual swim-

mers or for a collection of swimmers.

The above themes have been explored in this

paper through an idealized system of two spinning
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(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)

(d.1) (d.2)

Fig. 3: Demonstration of some elementary pair-

wise motions of the rotlets. The left hand column

shows the simulated trajectories of the rotlets as

they move along straight line paths at a constant

speed of 0.1 for two time units. The right hand

column shows the corresponding combination of

of the control vector fields and Lie bracket vector

fields required at each instant to achieve this mo-

tion. The coefficients a1,a2,a3,a4 refer to those of

Eq. (12), which are directly related to the control

inputs.

spheres, approximated by rotlets. A single rotlet

cannot generate a translational motion in an un-

bounded domain and while they can move in a

confined domain, such as a circular region, this

motion is not controllable. We have shown that due

to the existence of an invariant, the motion of a

system of two rotlets is uncontrollable in the ide-

alized setting of an unbounded domain. However,

through numerical computations and the applica-

tion of the Lie algebra rank condition, we have

shown that a comparable system of two rotlets in a

bounded, circular domain is controllable due to the

presence of a boundary. This finding implies that

spherical microrobots, which are easily fabricated,

can move as pairs in a controllable fashion, even

though individually they cannot. A pair of such

simple robots could perform manipulation tasks

that otherwise would require a micro robot with

specialized geometry. Furthermore, the model used

herein of the rotlet in the presence of a boundary is

more representative of a physical system than the

idealized model of an unbounded domain.

The results of the path planning framework and

motion primitives for Stokes singularities that has

been presented in this paper, can be extended to

the dynamics and control of the three dimensional

motion of realistic microswimmers such as heli-

cal swimmers and the three-sphere swimmers [11]

whose motion can be approximated by that of a

few singularities. Potential future directions of study

include control of individual swimmers in com-

plex domains, the development of motion primi-

tives, and their extension to the control of the mo-

tion of collections of microswimmers.
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