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Abstract— The control of swimming robots presents several
challenges, in large part due to the complex fluid-structure
interaction. Low fidelity simplified formulas for drag and lift
force lead to control amenable models, but do not capture
key physics that can play an especially important role in
the swimming of small-scale robots with limited actuation.
Higher fidelity models of the fluid-structure interaction lead to
nonlinear high dimensional control systems for which solution
methods are not obvious. We propose the use of the Koopman
operator in developing a linear representation for both the
complex fluid structure interaction as well as actuation effects.
As a test case for this framework we address the problem of
stabilizing the pitching oscillations of a hydrofoil that is hinged
in a simulated unsteady free stream flow. The actuator for
the hydrofoil is an internal reaction wheel which presents an
integral saturation constraint. Using the Koopman operator,
the lifted control system is used to formulate a constrained
optimal control problem which we solve using model predictive
control. The framework proposed in this paper can potentially
be extended to design a combination of data-driven and physics-
based control algorithms for swimming robots.

I. INTRODUCTION

The locomotion of fish and other aquatic swimmers has
many desirable characteristics such as energy efficiency,
agility, and stealth [1], which have inspired the design of
many biomimetic robots. Designs for fish-like robots imitat-
ing the motion of tails and fins beginning with at least [2] .
In all such designs, the small size of the fish-like robots and
the resulting constraints on actuation and power require that
for efficient and agile motion, the robots harness the fluid-
structure interaction [3]. The control of such robots therefore
requires modeling of the fluid-structure interaction that de-
termines the forces and moments on a robot. Low fidelity
models using simplified formulas for drag and lift forces are
amenable for control, but do not capture key physics that can
especially play an important role in the swimming of small-
scale robots with limited actuation. Higher fidelity models
of the fluid-structure interaction lead to high dimensional
nonlinear control systems for which solution methods are not
obvious. To overcome the challenges of the complex physics,
a more suitable representation of the governing model that
is also simultaneously amenable to standard control systems
tools is desirable.

This approach has proven fruitful to obtain reduced order
linear models and identification of dominant modes of in
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fluid flows, see for example [4], [5]. More recent progress has
been made on the extending the Koopman operator methods
to control systems, see for example [6]–[8] and for robotics
specifically [9]–[11]. In particular, [6] proposes an approach
to formulate a high dimensional linear control system that
is amenable to model predictive control (MPC). This can
enable the formulation of high-dimensional constrained lin-
ear optimal control problems, which is well suited for the
problem of controlling the motion of swimming robots as
it generates a convenient linear representation for both the
complex governing dynamics and control input while also
allowing state constraints to avoid over-extension or rotor
saturation.

This paper considers the problem of stabilizing the pitch-
ing motion of a hydrofoil which is hinged in a simulated
unsteady free stream flow, where the direction and the speed
of the free stream flow varies in time. The actuation is a
torque generated by a reaction wheel inside the hydrofoil.
Reaction wheels have been shown to enable both propulsion
[12], [13] and fast turning motion and path tracking with
small errors in swimming robots [14]–[16]. Reaction wheels
as actuators have the usual constraint of a maximum torque,
but additionally have a constraint on the integral of the torque
applied: when the spin angular velocity of the reaction wheel
driven by a motor reaches a maximum, the torque that it
applies drops to zero.

While the reaction wheel driven stabilization of a hydrofoil
is novel, extensive work exists on using linear models for
the stability of airfoils. Perhaps the simplest implementation
is linearizing the rigid body equations of motion about the
point to be stabilized by calculating “stability derivatives”,
and using linear control algorithms [17]. However, this
approach suffers approximation error that increases rapidly
with deviation from the linearization point [17], and does
not account for the unsteady fluid state, which itself is a
function of both current and past rigid body state. In flutter
problems, unsteady aerodynamic effects are accounted for by
extending this linearized state-space with aerodynamic states
approximated by Rational Function Approximators [18], but
this approach is only applied on specific mode shapes,
which may not be present in more general problems. Low
dimensional nonlinear models such as the Goman-Khrabrov
model [19] are also common in aerospace applications,
which provides an analytical approximation of the dynamics
of the flow stagnation point of the unsteady separated flow
over an airfoil. From there, the lift and drag acting on the
body can be approximated or optimized for [20]–[22] based
on the flow separation and angle of attack. While this model



has the advantage of being based on known physics, it is
limited to particular applications and typically still requires
the estimation of several unknown model parameters.

Recent progress on data-driven methods to model dy-
namical systems using the Koopman operator can be valu-
able for problem of stabilizing the pitching motion of a
hydrofoil without relying on linearization or estimation of
parameters in a nonlinear model. The Koopman operator-
based method used in this paper provides a systematic means
of obtaining a high-dimensional linear model accounting for
unsteady aerodynamics by seamless integration of pressure
data from the hydrofoil surface into the state-space model.
It can be generalized to more complex physical settings
such as interacting hydrofoils. Essentially, the Koopman
operator acts linearly on a “lifted” space of functions that
is associated with the observables of the dynamical system,
see for instance [23]–[25] for a review. Considering the
evolution of observable functions of the states rather than the
states themselves leads to a linear but infinite dimensional
dynamical system, which in practice can be projected onto a
finite, but high-dimensional space. The Koopman operator
MPC framework can incorporate constraints (such as the
saturation of the actuation integral) by extending the basis
functions of the lifted linear space to include states of
the reaction wheel or more generally the dynamics of the
actuator. The data-driven framework requires trajectory data
from the system that covers a large part of the state space,
which can be difficult to obtain experimentally without prior
knowledge of the dynamics and the effect of the feedback
control. Simulations are a first step to easily collect data for
such methods and creating control systems that can then be
improved via experiments [26].

The problem of stabilization of the pitching of a hydrofoil
is motivated by several problems in swimming robots: from
steering a robot in an upstream current, to attitude control
for a robotic platform that is stationary. Similar problems
have a rich history in aerospace engineering, where lift and
drag forces on an airfoil are sought to be controlled in an
unsteady flow. We expect that the work in this paper will have
relevance to other control problems for flying and swimming
robots.

II. MODELING

We consider a hydrofoil modeled as a NACA 0018 sym-
metrical airfoil pinned at its leading edge in a free-stream
with speed U0, directed at an angle ϕ(t) where ϕ = 0
corresponds to horizontal flow from left to right as shown in
Fig 1. The foil is actuated by an inertial reaction wheel with
moment of inertia Ir.

A. Numerical simulation of fluid-structure interaction

Calculations for the flow over airfoils and hydrofoils is an
old and well-studied problem. A collection of inviscid flow
solvers known as panel methods [27], [28] continue to be
a preferred simulation tool for high Reynolds number fluid
interaction problems. In these methods, boundary surfaces
are decomposed into discrete panels with source and vortex
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Fig. 1: Schematic of a hydrofoil pinned at its leading edge
(point O) in an unsteady free stream flow with speed U0(t) at
an angle ϕ(t). The foil has an internal reaction wheel which
can exert a torque τ on the foil. Also shown are two points
at which pressures pa and pb are measured. A line of point
vortices is shed at the trailing edge of the foil.

distributions on each panel such that fluid flow does not
pass through the surface. While the lack of viscous effects
can reduce simulation fidelity compared to modern meshed
Navier-Stokes solvers, panel methods have lower computa-
tional cost and easily incorporate body movement due to the
lack of meshing. We adopt the vortex panel method for the
numerical simulations of the fluid-structure interaction.

In a vortex panel method, each of the M panels has
a source distribution of strength σi, which varies between
panels, and a vortex distribution of strength γ which is
constant over the body. The Neumann boundary condition
is used; it stipulates that no flow passes through a panel
midpoint, or ⟨ui, ηi⟩ = 0 ∀ i ∈ {1, . . . ,M}, where ui is the
flow velocity vector at the center of panel i relative to the
body, and ηi is the surface normal unit vector at the same
control point. The Kutta condition enforces the condition
that static pressures p is continuous at two panel points
adjacent to the tail, i.e., p1 = pM . To preserve circulation,
vortex shedding occurs at the trailing edge by calculating the
change in circulation about the body at every time step and
and applying an opposite circulation to a wake panel at the
trailing edge, which is then shed as a point vortex of equal
circulation at its center. The structure of the system allows γ
to be solved independently, and because the flow velocity due
to a specific source or vortex panel is linear in its unknown
strength, the N unknown σi values can be found by solving
the linear system of N equations arising from the Neumann
boundary condition. With γ and the σi found, the flow field
is fully determined, and the pressure distribution around
the body can be computed from the unsteady Bernoulli
equation. From the pressures, the resultant torque acting on
the body can be computed. Then the angular acceleration
of the body is found as the total torque (including the rotor
torque) acting on the foil, and is equal to Irω̇. This can be
integrated to determine the body dynamics. A snapshot from
the simulation of the vortex wake due to a time-varying free
stream speed U0(t) and angle ϕ(t) is shown in Fig 2.

III. KOOPMAN LIFTING AND MPC
Koopman-based methods for model predictive control

have received significant attention in recent years (see, for



Fig. 2: A snapshot from a simulation of the interaction of
the pinned hydrofoil in an unsteady flow using the panel
method. The magnitude of fluid velocity is shown, with the
color map defined between dark blue at |v| = 0.5 and dark
red at |v| = 2. The time varying velocity free stream velocity
produces a non periodic vortex wake.

example [6], [29], [30]), as MPC provides an efficient means
of solving the optimal control problem that can handle
constraints and be implemented online in a feedback manner.
In this paper, we take the approach of [6], which modifies the
extended dynamic mode decomposition (EDMD) algorithm
[31] to account for the effects of actuation on the system
dynamics. More recent works [29], [30] have shown that
a similar data-driven approach can be used to obtain a
continuous time, bilinear representation of the system based
on the Koopman generator, which can then be implemented
for control in a receding horizon manner. While this method
appears to be more data efficient [29], the resulting system
is bilinear and thus the optimal control problem must be
solved either by using nonlinear optimization methods [29],
[30] or by quantizing the control input and reducing the
problem to selecting a control from a pre-defined set on each
step, as suggested by [29], [32]. In addition, these methods
also require that data on the derivatives of the states either
be measured or computed by finite differencing, while the
discrete-time approach only requires information about the
states. For these reasons, we opt for the alternative approach
of [6], which gives a linear representation of the system and
thus a convex formulation of the optimal control problem.

The following subsections briefly outline the approach,
beginning with a description of the EDMD method for
uncontrolled systems in Sec. III-A and the extension to
actuated systems in Sec. III-B.

A. Koopman operator for uncontrolled systems

The Koopman operator is an infinite dimensional linear
operator which propagates observable functions of the states
forward in time under the dynamics of the system. That is,
for the dynamical system

xt+1 = F (xt) (1)

where xt ∈ X ⊂ Rn and F : X 7→ X the action of the
Koopman operator K : L∞(X) 7→ L∞(X) on an observable
function g : X 7→ R is given as follows.

Kg(xt) = (g ◦ F )(xt) = g(xt+1) (2)

To approximate the infinite dimensional operator K, we
take the approach of extended dynamic mode decomposition

(EDMD) by projecting the observable function g onto the
space spanned by a set, D, of dictionary functions.

D = {ψ1, ψ2, . . . , ψk} (3)

That is, we make the approximation

Kg(xt) ≈ K(c⊺Ψ)(xt) ≈ c⊺K⊺Ψ(xt) (4)

where Ψ : X 7→ Rk is a column-vector valued function
where the elements are given by [Ψ(x)]i = ψi(x), c ∈ Rk

is a column vector of coefficients, and K ∈ Rk×k is the
projection of Koopman operator onto the space of functions
spanned by the dictionary D.

To compute the matrix approximation K of the Koopman
operator from data, we gather and store data in the form of
snapshot matrices

X =
[
x1 , · · · , xm

]
(5)

Y =
[
y1 , · · · , ym

]
(6)

where the matrices X and Y contain m state observations
on the columns and where yi = F (xi) for i = 1, . . . ,m.
We then lift the measurement data by evaluating the dictio-
nary functions at each measurment to obtain the lifted data
matrices ΨX ,ΨY ∈ Rk×m as follows.

ΨX =
[
Ψ(x1) , · · · , Ψ(xm)

]
(7)

ΨY =
[
Ψ(y1) , · · · , Ψ(ym)

]
(8)

Then, following from Eqs. 2 and 4, we have

ΨY = K⊺ΨX . (9)

With this, K can be computed by the following least-squares
minimization

min
K

∥ΨY Ψ
⊺
X −K⊺ΨXΨ⊺

X∥22 (10)

where the least squares problem has been written in normal
form so that the minimization only depends on the number
of dictionary functions used in the projection, not on the
number of measurements.

B. Controlled systems

For a control system of the form

xt+1 = Fu(xt, ut) (11)

where ut ∈ U ⊂ Rp is the control input and Fu : X×U 7→ X,
we take a similar approach to obtain a linear representation
of the system in a lifted space. That is, we seek a linear
approximation of the form

Ψ(xt+1) = AΨ(xt) +But (12)

where A ∈ Rk×k and B ∈ Rk×p are linear predictors
computed from observed trajectory data. To obtain such an



approximation from data, we gather data in the form of
snapshot matrices

X =
[
x1 , · · · , xm

]
(13)

Y =
[
y1 , · · · , ym

]
(14)

U =
[
u1 , · · · , um

]
(15)

as before, where we now have m state observations with
yi = Fu(xi, ui) for i = 1, . . . ,m. We then lift the X and Y
data as in Eqs. 7 and 8 and perform the minimization

min
A,B

∥ΨY −AΨX −BU∥22 (16)

or as a least squares problem,

min
M

∥V −MW∥22 (17)

where

W =

[
ΨX

U

][
ΨX

U

]⊺

, V = ΨY

[
ΨX

U

]⊺

,

A is given by the first k columns of M , and B is given by
the final p columns of M ∈ Rk×(k+p).

IV. RESULTS

A. Data collection

In order to apply the Koopman MPC framework to the
foil stabilization problem, we begin by gathering trajectory
data by simulating the model described in Sec. II of the
pinned foil in an unsteady free stream flow. The panel
method simulations are computed with a first-order Euler
timestep of 0.02s. Each of these steps takes an average of
1.41s to compute, largely due to the interactions between
the 200 point vortices, as well as their interactions with the
100 surface panels. Measurement data are collected every
0.06s. For the operator calculation, data is gathered from
a single trajectory of 100s (1,666 total measurements). In
this simulation, the rotor torque is chosen from a standard
normal distribution, N (0, 1) every 0.06s, and held constant
over 0.06s (3 simulation timesteps). The free stream flow
specified here is given by

u = U0(t)
(
cos(ϕ(t)), sin(ϕ(t))

)
(18)

U0(t) = 1 + 0.2 sin(t/π) + ϵ1 (19)

ϕ(t) =
π

6
sin(t) +

π

12
sin(2.5t) +

π

15
sin(0.4t) + ϵ2 (20)

where ϵ1 ∼ N (0, 1/60) and ϵ2 ∼ N (0, π/108) are noise
terms.
For all simulations included here, the inertias of the foil and
the rotor are taken to be equal; the fluid density and body
length are both scaled to unity.

Fig. 3: The values of θ and ω measured in simulation (solid),
compared with their estimates θK and ωK (dashed) which
are projected from the same initial states using iterative
multiplication by the Koopman operator for a sequence of
forcing torques τ drawn from a normal distribution of zero
mean and unit variance.

B. Lifting and Operator Computation

Once the trajectory data is generated by running the
simulations as described in Sec. IV-A, this data is stored
in snapshot matrices as in Eqs. 13-15. The stored states are
the foil angle and angular velocity, as well as two pressure
measurements pa, pb on the foil body at the locations shown
in Fig. 1. That is, the measurement vector is

x = [θ, ω, pa, pb]
⊺. (21)

To carry out the lifting of these states, as in Eq. 7-8, the
dictionary functions are chosen to be all monomials in the
measured states of up to order 3, as well as the state itself.

With the lifted states, the operators A and B are computed
by solving the least squares problem in Eq. 17. This is
computed as M = VW † where † represents the Moore-
Penrose pseudoinverse.

To assess how well the approximated Koopman operator
representation of the system captures the nonlinear fluid
robot interactions we compare the prediction of the operator
to a full panel method simulation. Fig. 3 shows the trajecto-
ries of θ and ω for the foil placed in the flow as described
above along with the predictions given by the propagating
the lifted initial condition with the approximated Koopman
operator. The torque τ chosen here is chosen from a normal
distribution τ ∼ N (0, 1) on each step, as was done in the
training data used for computing the approximate Koopman
operator. While not perfect, this figure indicates that the
linear operator gives sufficient predictive capability to be
implemented in a predictive control framework.

We also note here that the Koopman based computation of
the A and B predictor matrices is based on the assumption
that the data is obtained from an underlying time-invariant
control system of the form of Eq. 11. However, the numer-
ical simulation of the hydrofoil does include explicit time-
dependence, as the free stream flow magnitude and angle



vary in time. Essentially, applying the EDMD computation
as described in Sec. III-B to this system amounts to obtaining
a best-fit linear time invariant (LTI) system in the lifted
space. The following references [33]–[35] discuss extensions
of DMD, EDMD, and Koopman-based methods to nonau-
tonomous systems. Most of these methods involve consid-
ering multiple time scales or a sliding window approach
to DMD or EDMD, which allows the matrices A and B
to be updated from new data online. In what follows, we
show that the LTI approximation in lifted space captures the
nonlinearities of the system sufficiently to be applied for
control without accounting for the time dependence.

C. MPC Implementation
With the operators A and B computed, we now develop an

MPC formulation to stabilize the foil angle to zero while not
exceeding actuator constraints. For this, we use the following
cost function at each timestep, denoted by j,

Jj =

θjωj

Ωj


⊺ qθ 0 0

0 qω 0

0 0 qΩ


θjωj

Ωj

+ rτ2j (22)

so that the angular displacement and angular velocity of the
foil θ and ω are penalized, as well as the control effort τ
and the magnitude of the rotor velocity Ω. The values of
the weights chosen here are qθ = qω = 5, qΩ = 0.1, and
r = 0.01. This is implemented with a control timestep of
0.06s and a horizon length of N = 40 steps (2.4s). With this,
the MPC control is computed on each timestep by solving
the quadratic program

min
ut,...,u(t+N−1)

t+N−1∑
j=t

Jj (23a)

subject to: Ψ(xj+1) = AΨ(xj) +Bτj (23b)
Ωj+1 = Ωj −∆tτj/Ir (23c)
− Ωmax ≤ Ωj ≤ Ωmax (23d)
− τmax ≤ τj ≤ τmax (23e)

for j = t, . . . , t+N − 1

where the cost is given in Eq. 22 and the states θj and ωj

are included within the lifted state Ψ(xj). The two actuator
constraints considered are to not exceed the maximum torque
(23e) that can delivered by the motor driving the reaction
wheel or the maximum spin rate (23d) that the motor can
attain. In order to enforce the constraint on Ω = − 1

Ir

∫ t

0
τdt,

this spin rate is simply tracked as an additional state, with
updates performed via first order timestep, as in Eq. 23c.
So, on each timestep t, the current measurement xt given
by Eq. 21 is lifted to Ψ(xt) and the optimization problem
23 is solved for ut, . . . , u(t+N−1), using the Koopman ap-
proximation matrices A and B to propagate the lifted state
over the horizon. Then, the first input of this sequence, ut
is applied to the system. This optimization takes 0.043s on
average, which is shorter than the control timestep, enabling
real-time control.

D. Results

In Fig. 4 we show the results of the Koopman MPC applied
on the nonlinear system model described in Sec. II for
stabilizing the foil. The torque constraint is set to τmax = 0.5
and the rotor angular velocity constrain is set to Ωmax = 1.0
for this case. Fig. 4a shows the magnitude of the free stream

(a) (b)

(c) (d)

Fig. 4: (a) Variation in the free stream velocity magnitude, U0

over time. (b) Foil angular velocity with zero control input
ωb, with τ from MPC ωc. (c) Foil angle, θb, with zero control
input (red), θc (black) when the control input is τ from MPC,
and the free stream flow angle ϕ. (d) Rotor angular velocity
Ω and torque τ commanded by the Koopman MPC.

fluid velocity, which is given by Eq. 19. The free stream fluid
angle, given by Eq. 20 is shown in Fig. 4c. Fig. 4c compares
the foil angle from a simulation with the Koopman MPC
to an uncontrolled simulation and Fig. 4b shows the same
comparison for the foil angular velocities. We see that the
controlled foil angle θc performs much smaller oscillations
than an uncontrolled foil angle θb, with an RMS value of
θRMS
c = 0.145 and θRMS

b = 0.410 radians. The controlled foil
angular velocity ωc is on average much smaller in magnitude
than the angular velocity ωb of the uncontrolled foil, with
ωRMS
c = 0.079 and ωRMS

b = 0.35. Fig. 4d shows the rotor
torque actuation commanded by the MPC for the controlled
simulation, along with the rotor angular velocity Ω. In places
the torque appears like an inverted image of the flow angle
ϕ, even though this angle is not provided to the controller,
implying that the Koopman operator is encoding the state
of the fluid through the two surface pressure measurements.
The rotor velocity Ω does not saturate the constraint for these
flow conditions, however the torque τ does reach its limit.

In order to illustrate the effect of the spin rate constraint on
the performance we show an additional simulation in which
the Ω constraint is active during the simulation. Results from
a simulation in the same flow with Ωmax set to 0.7 and other
parameters maintaining the same value are shown in Fig. 5.
In this case, we see that Ω is extended to its limit, though
only briefly, and the performance in terms of foil stabilization



(a) (b)

Fig. 5: (a) Foil angle and angular velocity and (b) rotor
angular velocity and torque for a smaller rotor speed limit
Ωmax = 0.7.

suffers somewhat in comparison to the previous case, though
the MPC does show stabilizing effects in comparison to the
uncontrolled system, as for this case we have θRMS

c = 0.171
and ωRMS

c = 0.102.

V. CONCLUSION

We have demonstrated the effectiveness of a Koopman
operator based model predictive control scheme for the
application of stabilizing a pitching hydrofoil in an unsteady
free stream flow. This work could potentially be extended to
develop data driven control methods for a swimming robot in
an unsteady flow, which remains a significant challenge for
underwater autonomous exploration. These methods could
also be extended to give such a robot enhanced adaptability,
by updating the operator online to account for changing flow
characteristics or including preview information about the
flow obtained from other distributed robots or sensors.
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[32] S. Klus, F. Nüske, S. Peitz, J.-H. Niemann, C. Clementi, and
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