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ABSTRACT
In this paper we present a novel unactuated mechanism that

utilizes gravity to jump. The passive jumper is a hoop whose
center of mass does not coincide with its geometric center. When
the hoop rolls down an inclined plane, the center of mass of the
hoop moves along a cycloid. As the hoop gains speed moving
down the inclined plane, the normal reaction between the hoop
and the plane becomes insufficient to ensure contact between the
hoop and the plane. This allows the hoop to ‘jump’. Experiments
and analysis show that such a jump can be significant, with the
jump height from the plane being as high as one body length (di-
ameter) of the hoop. The mechanics of the passive jumping hoop
powered by gravity investigated in this paper can inspire the de-
sign of actuated jumping robots that can both roll and jump.

1 Introduction
The ability of a robot to hop or jump even by a small height

can add versatility to its locomotion and enable it to move on ter-
rain that it otherwise may have difficulty doing so. Even robots
in structured environments will benefit from an ability to hop on
small steps or jump over obstacles. For robots that are small in
size, jumping also offers improvement in locomotion efficiency.
Several designs of robots have sought to incorporate the jumping
or hopping gait in the repertoire of a robot’s gaits. The common
feature of the designs that produce jumping, are a mechanism to
store potential energy that can be released in a short interval. The
resulting conversion of the potential energy to kinetic energy in

∗Address all correspondence related to the paper should be addressed to this
author.

the vertical direction leads to a jump. The most popular method
to achieve such storage and release of energy is via traditional
elastic elements, such as compression or torsional springs or flex-
ural plates and columns. Some well known examples that adopt
such design include the MSU jumper [1], the Penn Jerboa [2], the
Grillo [3] and the Salto [4] and other impressive bioinspired mi-
cro jumping robots [5]. Other means of releasing stored energy
have been explored. For instance the Boston Dynamics sand-flea
uses a carbon dioxide powered piston to launch itself to very im-
pressive heights [6].

The present paper takes a radically new approach and in-
stead explores the concept of a passive jumper. Such a concept is
inspired by the passive walking legged mechanisms [7–11] that
utilize gravity alone to walk down on an inclined plane. We in-
vestigate the dynamics of a rolling wheel or a hoop on an inclined
plane. The hoop is such that its center of mass is not coincident
with the geometric center of the hoop. As the hoop rolls down
the plane, the eccentric center of mass experiences a centrifu-
gal force directed towards the center of the hoop, which when
pointing downwards results in a decrease in the normal reaction
force between the hoop and the inclined plane. If the parameters
of the system are properly chosen, the normal reaction becomes
zero at some time and the hoop ‘jumps’ off the plane. We an-
alyze this phenomenon and present experimental evidence for a
passive jumper.

While the passive jumper requires an inclined plane to jump,
it is possible to design a rolling jumper that is driven by a motor
that mimics the role of the inclined plane. A jumping robot based
on a wheel can combine the advantages of wheeled motion with
the ability to jump.
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2 Dynamic model
The mechanical system consists of a thin hoop of mass m

and radius R, with its mass uniformly distributed around the cir-
cumference of the hoop. A particle of mass mp is attached to the
hoop at a distance of L from the center of the hoop. The hoop
is released from rest on an inclined plane with slope angle θ. It
is assumed that the friction between the hoop and the inclined
plane is sufficient to prevent slipping. A schematic of the hoop
and inclined plane system is shown in Fig. 1 with the generalized
coordinates x, y, and φ denoted.
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Figure 1: Schematic of the system of a hoop of mass m, moment
of inertia I, and radius R with an offset point mass mp rolling on
a plane inclined at an angle θ. The generalized coordinates x,y,φ
are also depicted here.

The center of the hoop denoted by O has coordinates (x,y)
and the center of mass of the hoop is located at a distance of
r = mp

m+mp
L from the center O. The point of attachment of the

particle of mass mp is denoted by P. The clockwise angle made
by the line OP with respect to a line perpendicular to the plane is
denoted by φ. The system has two holonomic constraints in pure
rolling motion,

y−R = 0 (1)

and

x−Rφ = 0. (2)

Assuming that the friction force between the hoop and the
plane is high enough to prevent slipping, the configuration space
of the system can be parameterized by three generalized coordi-
nates, q = (x,y,φ). The equations of motion can be derived in a
straightforward manner using the Euler-Lagrange equations and
the generalized forces required to enforce the constraints (1) and
(2) can be obtained using the method of Lagrange multipliers.
The kinetic energy of the system is

T =
1
2

mp
(
ẋ2 + ẏ2 +L2

φ̇
2 −2ẋφ̇Lcosφ+2ẏ φ̇L sinφ

)
+

1
2

m(ẋ2 + ẏ2)+
1
2

Iφ̇
2.

(3)

The potential energy is defined as

V = (m+mp)g(ycosθ−Rφsinθ)−mpgLcos(θ+φ). (4)

The Lagrangian is

L = T −V (5)

and the Euler-Lagrange equations, with constraints implemented
using the method of Lagrange undetermined multipliers [12, 13]
are

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= λ j

∂ f j

∂qi
. (6)

Here the expressions f j are given by the left hand side of the
constraint equations (1) and (2).

Applying Eq. (6), the equations governing the motion of this
system are found to be

(m+mp)ẍ−mpφ̈Lcosφ+mpφ̇
2Lsinφ

−(m+mp)gsinθ = λ f
(7)

(m+mp)ÿ+mpφ̈Lsinφ+mpφ̇
2Lcosφ

+(m+mp)gcosθ = λn
(8)

(I +mpL2)φ̈−mpẍLcosφ+moÿLsinφ

+mpgLsinθ+φ =−λ f R
(9)

2 Copyright c© 2019 by ASME



where for notational clarity, we let λ f represent the Lagrange
multiplier associated with the friction required to satisfy (2) and
let λn represent the Lagrange multiplier associated with the nor-
mal force required to satisfy (1).

In the following sections, we divide the dynamics of the sys-
tem into two distinct phases: 1) a pure rolling phase in which the
hoop rolls without slip on the plane, with both Eqs (1) and (2) sat-
isfied and 2) a flight phase in which the hoop loses contact with
the plane and neither constraint is satisfied. We note here that
in certain cases, it may be necessary to consider an intermediate
phase, in which the hoop remains in contact with the plane, but
may slip. Analytical modeling of such a phase which requires
careful consideration of the coefficients of friction is possible,
however the experimental verification of such roll-slip transitions
are harder to detect. As we will discuss later, neglecting such a
roll-slip transition leads to only negligible errors in the analytical
solution compared to the experiments.

2.1 Rolling phase of motion
During the pure rolling phase of motion, the constraint equa-

tions (2) and (1) must be satisfied, thus they may be used to re-
duce the system to a single second-order differential equation of
φ that fully defines the dynamics. This equation is given by

(
I +mp L2 +(m+mp)R2 −2mo LRcosφ

)
φ̈+mp L φ̇

2 R sinφ

= (m+mp)gR sinθ−mp gLsin(θ+φ)

(10)

The generalized forces of constraint are then given as fol-
lows. The normal reaction, λn between the hoop and the inclined
plane is

λn = mpφ̈Lsinφ+mpLφ̇
2 cosφ+(m+mp)gcosθ. (11)

and the force due to friction between the hoop and the plane is

λ f =
(
(m+mp)R−mpLcosφ

)
φ̈+mpLφ̇

2 sinφ−(m+mp)gsinθ.

(12)

2.2 Flight phase of motion
During the flight phase of the hoop’s motion, the constraints

given by (1) and (2) are no longer satisfied, and so the govern-
ing equations cannot be reduced. Therefore, to fully specify the
dynamics, three differential equations are required, and may be
found by setting the generalized forces of constraint λ f and λn
to zero in Eqs. (7-9). Thus, the equations governing the flight

phase dynamics are given by

(m+mp) ẍ−mp φ̈L cosφ+mp φ̇
2 Lsinφ− (m+mp)gsinθ = 0

(m+mp)ÿ+mpφ̈Lsinφ+mpφ̇
2Lcosφ+(m+mp)gcosθ = 0

(I +mpL2)φ̈−mpẍLcosφ+moÿLsinφ+mpgLsinθ+φ = 0
(13)

3 Experimental and Simulation Results
3.1 Experimental Setup

Before examining the results of the numerical simulations
of these dynamics, we first discuss the experimental realization
of this system. The hoop-mass system was constructed by first
3D-printing a hoop frame with a diameter of 8.2 cm, as shown
in Fig. 2. This frame was designed with five circular channels
into which steel cylindrical weights would be inserted. The hoop
frame was printed in PLA plastic and found to weigh approxi-
mately 8.2 grams without the addition of any added masses. Af-
ter printing the frame of the hoop, five steel weights were in-
serted into the cylindrical channels to represent the offset point
mass, mp. Each of the masses was found to weigh 5 grams, for a
total of 20 grams. Thus, the hoop frame and added mass together
weigh approximately 28.2 grams. In all numerical simulations
discussed in this paper, these values are used for the mass of the
hoop and the point mass, and it is assumed that the point mass
lies on the radius of the hoop. That is, in simulation we take
L = R.

8.2 cm

(a) (b)
Figure 2: 3D-printed hoop used in experiments.

For the experimental setup, the hoop is placed on a
wooden inclined plane with a slope angle of approximately θ =
0.40 rad = 22.9◦. Videos of the hoop’s motion was recorded us-
ing a Photron FASTCAM SA4 camera at a frame rate of 1000
frames per second. A transparent tape was stuck along a diame-
ter of the hoop, with one end point at the center of the added mass
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(a) (b)

(c) (d)
Figure 3: Image data recorded at various instants during the ex-
periment. (a) Image taken after hoop has begun steady rolling
motion, but well before losing contact (t = 0.111 s in Fig 4). (b)
Hoop at the instant before visibly losing contact (t = 0.330 s in
Fig 4). (c) Hoop at maximum height y, normal to the incline
(∆ t = 0.129 s in Fig 6). (d) Hoop at the instant of contacting the
incline after the jump (∆ t = 0.198 s in Fig 6).

and the other at a point diametrically opposite to it. Three black
markings were placed on this tape: one at the location of the
point mass, the second at the diametrically opposite point, and
the third at the center of the hoop. These markings were placed
in order to enable the points to be easily tracked in the videos
and images of the hoop in post-processing. Image data was gath-
ered from the point of release through the jump until just after the
collision of the hoop with the inclined plane. This entire interval
spanned approximately 0.593 seconds. Select frames from this
image data are shown below in Fig. 3.

From the image data collected, the location of the center of
the hoop and the location of the point mass were tracked for each
instant that a frame was recorded. These frames were recorded
at intervals of 0.001 seconds. From this instantaneous position
data, the angle φ is computed and the velocities are determined
using a central-differencing method.

(a)

(b)
Figure 4: Comparison of experimental measurements of the an-
gle φ and φ̇ with predicted values from the analytical model dur-
ing the rolling phase of the dynamics. Vertical dashed lines in-
dicate when the jump occurs in the experiment and when the
normal force is predicted to vanish by the analytical model re-
spectively.

3.2 Rolling phase of motion
In order to compare numerical simulation of the analytical

model, the equation (10) governing the rolling motion of the
hoop is integrated forward in time using MATLAB’s ordinary dif-
ferential equation solver ode45. The initial condition is chosen
to coincide with the angle φ and angular velocity φ̇ computed
from the experimental image data. In this simulation, the normal
reaction λn required to keep the hoop in contact with the plane
and the friction force λ f required to maintain the rolling motion
without slip are computed using equations (11) and (12) respec-
tively. These two parameters may then be used to predict when
the hoop will lose contact with the plane (λn = 0) or when the
hoop will begin to experience slip.
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Numerical values of φ and φ̇ found by integrating the ana-
lytical model are shown alongside the experimentally measured
values in Figs 4 (a) and (b) respectively. In this figure, the in-
stants in time where the analytical model predicts that the nor-
mal force will vanish are shown by vertical dashed blue lines.
The time instant at which the hoop begins to visibly lose contact
with the surface of the inclined plane in the experiment is shown
by a vertical dashed red line.

We note that in Fig 4, there are two instances shown at
which the normal reaction is predicted to vanish by the analytical
model. The second instance is close in time to that of the exper-
imentally realized jump, but the first instance occurs well before
the jump. A plot of the constraint forces, the normal reaction and
the friction force, calculated from (11)-(12) are shown in Fig.
5 (a) and Fig. 5 (b) respectively. The normal reaction becomes
zero at about t = 0.17s, but nevertheless stays close to zero before
increasing again to a large value at a later time. The constraint
force required to enforce the no-slip condition as shown in Fig.
5 could be more than the friction force which is bounded above
by the maximum allowable values of static friction, µsN, where
µs is the coefficient of static friction. As the normal reaction de-
creases, the friction force converges to zero faster, producing a
slip before loss of contact with the plane occurs. Since work is
done by the friction force during a slip, it reduces the rate of in-
crease of the kinetic energy of the hoop as it moves down the
inclined plane. We hypothesize that this reduction in kinetic en-
ergy of the hoop prevents the normal reaction from decreasing to
zero. This prevents the hoop from losing contact with the plane.

A transition to slip motion occurs a small time interval be-
fore the time the normal reaction becomes zero at about t = 0.3s.
This transition is even observable in experiments just prior to the
hoop’s loss of contact with the plane. Once again we neglect
these roll-slip transitions before the jump. In both the cases of
the slip dynamics, the slip dynamics persist only for a very small
interval of time, less than 0.005s. The effect of ignoring these
transitions is that the kinetic energy of the hoop is predicted to
be higher than observed in experiment. The increased kinetic
energy of the hoop, leads to a jump at an earlier time in the sim-
ulation than observed.

3.3 Flight phase of motion
Once the normal reaction which maintains the constraint (1)

vanishes, the hoop loses contact with the inclined plane and be-
gins the flight phase of its motion. During this phase, three equa-
tions given by (13), are required to fully describe the dynamics.
In simulation, these are integrated forward in time from an ini-
tial condition based on the end condition of the rolling phase -
the point at which the normal force vanishes and the hoop loses
contact. If the angle φ and angular velocity φ̇ at that instant are
denoted φ f and φ̇ f respectively, then the initial conditions for the

(a)

(b)
Figure 5: (a) Normal force and (b) friction force required to
maintain constraints (1) and (2) respectively during the pure
rolling phase of motion.

flight phase of motion, denoted by the subscript i, would be

xi = φ f R ẋi = φ̇ f R

yi = R ẏi = 0

φi = φ f φ̇i = φ̇ f

Since there is a discrepancy (less than 5%) between the sim-
ulation and the experimental data data with regard to the instant
when the jump begins, a small error is introduced in the initial
conditions for the flight phase in the simulation, which leads to
an over prediction of the jump height. For this reason, a correc-
tion to the initial conditions of the flight phase is used based on
the experimental data. With this small correction to the initial
conditions, the numerical simulation of the flight phase matches
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Figure 6: Comparison of experimentally measured values of the generalized coordinates x, y, and φ with the values predicted by
numerical simulation of the analytical model during the flight phase of motion.

closely with the experimental data, as is shown in Fig. 6. In these
figures, the change in each of the generalized coordinates during
the flight phase is shown, beginning from the instant at which the
hoop loses contact (∆t = 0 s). The experiments and the simula-
tions reveal that the hoop can jump to a height of one diameter
above the plane. This is a remarkable jump for a completely pas-
sive mechanism.

Furthermore, we also verify that if the hoop is allowed to
jump at the first instance when the normal reaction becomes zero,
the height of the jump is negligibly small, less than 0.05 times the
diameter, implying that the kinetic energy of the hoop is small at
the instant of jump-off. This provides further evidence to support
our hypothesis that a small reduction in the kinetic energy due
to roll-slip transitions in fact prevents this spurious jump in the
experiment.

4 Conclusion
We have shown both analytically and experimentally that a

passive jumping mechanism can be constructed from a circular
hoop whose center of mass does not coincide with its geomet-
ric center. These results show that this simple mechanism can
achieve jumps of significant heights, even as much as one body
length. Furthermore, we have derived an analytical model from
first principles and shown that this model provides a close ap-
proximation to the experimentally realized system. Future work
will focus on improving the analytical model by including roll-
slip-roll and roll-slip-jump transitions as well as achieving multi-
ple jumps. The understanding of the passive dynamics provided
by this work can serve as a starting point for the design of versa-
tile robots that have the ability to both roll and jump.
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